Advertisement

Table of contents

  1. Front Matter
  2. Andrei Agrachev, Jean-Paul Gauthier
    Pages 1-8
  3. Andrei Agrachev, Igor Zelenko
    Pages 9-21
  4. Claudio Altafini
    Pages 23-34
  5. Nnaedozie P. I. Aneke, Henk Nijmeijer, Abraham G. de Jager
    Pages 35-47
  6. Alessandro Astolfi, Patrizio Colaneri
    Pages 49-71
  7. Jacques Audounet, Denis Matignon, Gérard Montseny
    Pages 73-82
  8. Victor Ayala, Luiz A. B. San Martin
    Pages 83-92
  9. Miguel Ayala Botto, Ton van den Boom, José Sá da Costa
    Pages 93-102
  10. Iyad Balloul, Mazen Alamir
    Pages 113-121
  11. Alfonso Baños, Antonio Barreiro, Francisco Gordillo, Javier Aracil
    Pages 123-136
  12. Jochen Behrens, Fabian Wirth
    Pages 171-184
  13. Guido Blankenstein, Arjan van der Schaft
    Pages 185-205
  14. Pierre-Alexandre Bliman
    Pages 207-237
  15. Fabio Camilli, Lars Grüne, Fabian Wirth
    Pages 277-289
  16. Claudio De Persis, Alberto Isidori
    Pages 331-339
  17. Domitilla Del Vecchio, Riccardo Marino, Patrizio Tomei
    Pages 341-353
  18. Thomas Fliegner, Hartmut Logemann, Eugene P. Ryan
    Pages 355-366
  19. Michel Fliess, Richard Marquez, Emmanuel Delaleau
    Pages 367-384
  20. Kenji Fujimoto, Jacquelien M. A. Sherpen
    Pages 385-397
  21. Denis Gillet, Christophe Salzmann, Pierre Huguenin
    Pages 399-407
  22. Veit Hagenmeyer, Philipp Kohlrausch, Emmanuel Delaleau
    Pages 439-452
  23. Uwe Helmke, Fabian Wirth
    Pages 467-480
  24. Guido Herrmann, Sarah K. Spurgeon, Christopher Edwards
    Pages 481-495
  25. Henri J. C. Huijberts, Henk Nijmeijer
    Pages 509-520
  26. Fabrice Jadot, Philippe Martin, Pierre Rouchon
    Pages 535-543
  27. Frédéric Jean
    Pages 569-574
  28. Matei Kelemen, Aimé Francis Okou, Ouassima Akhrif, Louis-A. Dessaint
    Pages 583-596

About these proceedings

Introduction

Control of nonlinear systems, one of the most active research areas in control theory, has always been a domain of natural convergence of research interests in applied mathematics and control engineering. The theory has developed from the early phase of its history, when the basic tool was essentially only the Lyapunov second method, to the present day, where the mathematics ranges from differential geometry, calculus of variations, ordinary and partial differential equations, functional analysis, abstract algebra and stochastic processes, while the applications to advanced engineering design span a wide variety of topics, which include nonlinear controllability and observability, optimal control, state estimation, stability and stabilization, feedback equivalence, motion planning, noninteracting control, disturbance attenuation, asymptotic tracking. The reader will find in the book methods and results which cover a wide variety of problems: starting from pure mathematics (like recent fundamental results on (non)analycity of small balls and the distance function), through its applications to all just mentioned topics of nonlinear control, up to industrial applications of nonlinear control algorithms.

Keywords

Nonlinear Operator Stability Systems algorithm calculus control engineering dynamische Systeme geometry mechanics partial differential equation

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0110202
  • Copyright Information Springer-Verlag London Limited 2001
  • Publisher Name Springer, London
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-85233-363-8
  • Online ISBN 978-1-84628-568-4
  • Series Print ISSN 0170-8643
  • Series Online ISSN 1610-7411
  • Buy this book on publisher's site