Advertisement

Schubert Varieties and Degeneracy Loci

  • Authors
  • William¬†Fulton
  • Piotr¬†Pragacz

Part of the Lecture Notes in Mathematics book series (LNM, volume 1689)

Table of contents

  1. Front Matter
    Pages I-X
  2. William Fulton, Piotr Pragacz
    Pages 1-13
  3. William Fulton, Piotr Pragacz
    Pages 26-39
  4. William Fulton, Piotr Pragacz
    Pages 40-52
  5. William Fulton, Piotr Pragacz
    Pages 53-64
  6. Open image in new window and Open image in new windowpolynomial formulas for other classical groups
    William Fulton, Piotr Pragacz
    Pages 79-91
  7. William Fulton, Piotr Pragacz
    Pages 92-96
  8. William Fulton, Piotr Pragacz
    Pages 97-103
  9. Back Matter
    Pages 104-148

About this book

Introduction

Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry.

Keywords

Algebraic geometry Combinatorics Euler characteristic algebra algebraic groups algebraic topology

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0096380
  • Copyright Information Springer-Verlag Berlin Heidelberg 1998
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-64538-2
  • Online ISBN 978-3-540-69804-3
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site