Advertisement

Galois Theory of Difference Equations

  • Authors
  • Marius van der Put
  • Michael F. Singer

Part of the Lecture Notes in Mathematics book series (LNM, volume 1666)

Table of contents

  1. Front Matter
    Pages I-VII
  2. Marius van der Put, Michael F. Singer
    Pages 4-27
  3. Marius van der Put, Michael F. Singer
    Pages 28-34
  4. Marius van der Put, Michael F. Singer
    Pages 35-44
  5. Marius van der Put, Michael F. Singer
    Pages 45-51
  6. Marius van der Put, Michael F. Singer
    Pages 52-59
  7. Marius van der Put, Michael F. Singer
    Pages 60-67
  8. Marius van der Put, Michael F. Singer
    Pages 71-76
  9. Marius van der Put, Michael F. Singer
    Pages 77-94
  10. Marius van der Put, Michael F. Singer
    Pages 95-110
  11. Marius van der Put, Michael F. Singer
    Pages 111-126
  12. Marius van der Put, Michael F. Singer
    Pages 127-148
  13. Marius van der Put, Michael F. Singer
    Pages 149-174
  14. Back Matter
    Pages 175-180

About this book

Introduction

This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.

Keywords

algebra connection matrices difference equations galois theory multisummation

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0096118
  • Copyright Information Springer-Verlag Berlin Heidelberg 1997
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-63243-6
  • Online ISBN 978-3-540-69241-6
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site