Advertisement

Mixed Motives and Their Realization in Derived Categories

  • Authors
  • Annette Huber

Part of the Lecture Notes in Mathematics book series (LNM, volume 1604)

Table of contents

  1. Front Matter
    Pages i-xv
  2. Annette Huber
    Pages 2-10
  3. Annette Huber
    Pages 10-21
  4. Annette Huber
    Pages 22-27
  5. Annette Huber
    Pages 28-45
  6. Annette Huber
    Pages 45-48
  7. Annette Huber
    Pages 50-56
  8. Annette Huber
    Pages 57-60
  9. Annette Huber
    Pages 60-73
  10. Annette Huber
    Pages 73-80
  11. Annette Huber
    Pages 86-95
  12. Annette Huber
    Pages 98-102
  13. Annette Huber
    Pages 102-112
  14. Annette Huber
    Pages 112-122
  15. Annette Huber
    Pages 122-138
  16. Annette Huber
    Pages 140-146
  17. Annette Huber
    Pages 146-154
  18. Annette Huber
    Pages 154-169
  19. Annette Huber
    Pages 172-177
  20. Annette Huber
    Pages 177-182
  21. Annette Huber
    Pages 182-186
  22. Annette Huber
    Pages 186-195
  23. Back Matter
    Pages 197-203

About this book

Introduction

The conjectural theory of mixed motives would be a universal cohomology theory in arithmetic algebraic geometry. The monograph describes the approach to motives via their well-defined realizations. This includes a review of several known cohomology theories. A new absolute cohomology is introduced and studied.
The book assumes knowledge of the standard cohomological techniques in algebraic geometry as well as K-theory. So the monograph is primarily intended for researchers. Advanced graduate students can use it as a guide to the literature.

Keywords

Cohomology Grad Grothendieck topology K-theory algebraic geometry chern classes motives

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0095503
  • Copyright Information Springer-Verlag Berlin Heidelberg 1995
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-59475-8
  • Online ISBN 978-3-540-49274-0
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site