Advertisement

Linear Pro-p-Groups of Finite Width

  • Authors
  • Gundel Klaas
  • Charles R. Leedham-Green
  • Wilhelm Plesken

Part of the Lecture Notes in Mathematics book series (LNM, volume 1674)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 1-8
  3. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 9-11
  4. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 12-20
  5. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 21-25
  6. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 26-29
  7. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 30-54
  8. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 55-58
  9. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 59-61
  10. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 62-67
  11. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 68-77
  12. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 78-91
  13. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 92-105
  14. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 106-107
  15. Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken
    Pages 108-108
  16. Back Matter
    Pages 109-115

About this book

Introduction

The normal subgroup structure of maximal pro-p-subgroups of rational points of algebraic groups over the p-adics and their characteristic p analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become periodic. The richness of the lattice of normal subgroups is studied by the notion of obliquity. All just infinite maximal groups with Lie algebras up to dimension 14 and most Chevalley groups and classical groups in characteristic 0 and p are covered. The methods use computers in small cases and are purely theoretical for the infinite series using root systems or orders with involutions.

Keywords

Lattice algebra linear-p-groups order with involutions over local fields p-acid analytic groups p-groups pro-p-groups of finite width

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0094086
  • Copyright Information Springer-Verlag Berlin Heidelberg 1997
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-63643-4
  • Online ISBN 978-3-540-69623-0
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site