Configuration Spaces over Hilbert Schemes and Applications

  • Authors
  • Danielle Dias
  • Patrick Le Barz

Part of the Lecture Notes in Mathematics book series (LNM, volume 1647)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Danielle Dias, Patrick Le Barz
    Pages 1-8
  3. Danielle Dias, Patrick Le Barz
    Pages 10-64
  4. Danielle Dias, Patrick Le Barz
    Pages 66-128
  5. Back Matter
    Pages 129-143

About this book

Introduction

The main themes of this book are to establish the triple formula without any hypotheses on the genericity of the morphism, and to develop a theory of complete quadruple points, which is a first step towards proving the quadruple point formula under less restrictive hypotheses.
This book should be of interest to graduate students and researchers in the field of algebraic geometry. The reader is expected to have some basic knowledge of enumerative algebraic geometry and pointwise Hilbert schemes.

Keywords

Hilbert schemes Morphism algebra complete quadruples variety configuration spaces formula geometry multiple point

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0093653
  • Copyright Information Springer-Verlag Berlin Heidelberg 1996
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-62050-1
  • Online ISBN 978-3-540-49634-2
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book