Advertisement

Automorphism Groups of Compact Bordered Klein Surfaces

A Combinatorial Approach

  • Authors
  • Emilio Bujalance
  • José Javier Etayo
  • José Manuel Gamboa
  • Grzegorz Gromadzki

Part of the Lecture Notes in Mathematics book series (LNM, volume 1439)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. Emilio Bujalance, José Javier Etayo, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 1-20
  3. Emilio Bujalance, José Javier Etayo, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 21-37
  4. Emilio Bujalance, José Javier Etayo, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 38-59
  5. Emilio Bujalance, José Javier Etayo, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 60-97
  6. Emilio Bujalance, José Javier Etayo, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 98-137
  7. Emilio Bujalance, José Javier Etayo, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 138-152
  8. Emilio Bujalance, José Javier Etayo, José Manuel Gamboa, Grzegorz Gromadzki
    Pages 153-164
  9. Back Matter
    Pages 165-201

About this book

Introduction

This research monograph provides a self-contained approach to the problem of determining the conditions under which a compact bordered Klein surface S and a finite group G exist, such that G acts as a group of automorphisms in S. The cases dealt with here take G cyclic, abelian, nilpotent or supersoluble and S hyperelliptic or with connected boundary. No advanced knowledge of group theory or hyperbolic geometry is required and three introductory chapters provide as much background as necessary on non-euclidean crystallographic groups. The graduate reader thus finds here an easy access to current research in this area as well as several new results obtained by means of the same unified approach.

Keywords

Crystallographic groups Grad Group theory Riemann surfaces algebraic curve non-euclidean Algebraic curves

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0084977
  • Copyright Information Springer-Verlag Berlin Heidelberg 1990
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-52941-5
  • Online ISBN 978-3-540-47180-6
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site