Advertisement

Geometric Aspects of Functional Analysis

Israel Seminar (GAFA) 1986–87

  • Editors
  • Joram Lindenstrauss
  • Vitali D. Milman

Part of the Lecture Notes in Mathematics book series (LNM, volume 1317)

Table of contents

  1. Front Matter
    Pages I-VII
  2. J. Bourgain, J. Lindenstrauss, V. D. Milman
    Pages 44-66
  3. M. Gromov
    Pages 132-184
  4. J. Lindenstrauss
    Pages 185-200
  5. William B. Johnson
    Pages 201-203
  6. J. Bourgain
    Pages 204-223
  7. J. Bourgain, J. Lindenstrauss
    Pages 250-270
  8. J. Bourgain, M. Meyer, V. Milman, A. Pajor
    Pages 271-282

About these proceedings

Introduction

This is the third published volume of the proceedings of the Israel Seminar on Geometric Aspects of Functional Analysis. The large majority of the papers in this volume are original research papers. There was last year a strong emphasis on classical finite-dimensional convexity theory and its connection with Banach space theory. In recent years, it has become evident that the notions and results of the local theory of Banach spaces are useful in solving classical questions in convexity theory. The present volume contributes to clarifying this point. In addition this volume contains basic contributions to ergodic theory, invariant subspace theory and qualitative differential geometry.

Keywords

Banach Space Convexity banach spaces functional analysis

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0081732
  • Copyright Information Springer-Verlag Berlin Heidelberg 1988
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-19353-1
  • Online ISBN 978-3-540-39235-4
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site