Categorical Algebra and its Applications

Proceedings of a Conference, held in Louvain-La-Neuve, Belgium, July 26 – August 1, 1987

  • Editors
  • Francis Borceux

Part of the Lecture Notes in Mathematics book series (LNM, volume 1348)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Michael Barr
    Pages 19-35
  3. Francis Borceux, Joan Wick Pelletier
    Pages 36-54
  4. Yves Diers
    Pages 87-101
  5. Iole F. Druck, Gonzalo E. Reyes
    Pages 102-106
  6. John W. Duskin
    Pages 107-117
  7. Felipe Gago
    Pages 125-129
  8. J. Isbell, I. Křiž, A. Pultr, J. Rosický
    Pages 154-172
  9. Peter Johnstone, Sun Shu-Hao
    Pages 173-193
  10. Anders Kock
    Pages 194-207
  11. Jürgen Koslowski
    Pages 208-220
  12. J. Lambek
    Pages 221-229
  13. A. Lirola, E. R. Aznar, M. Bullejos
    Pages 230-241
  14. Saunders Mac Lane
    Pages 242-256

About these proceedings

Introduction

Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

Keywords

Category theory Cohomology Group theory Lattice algebra ring theory

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0081344
  • Copyright Information Springer-Verlag Berlin Heidelberg 1988
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-50362-0
  • Online ISBN 978-3-540-45985-9
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book