Skip to main content

System of Human Activity Systems

A Novel Way to Visualize Invisible Risks

  • Book
  • © 2023


  • Facilitates inter-disciplinary and cross-industry learning
  • Enhances synthesis of theory and practice
  • Enables risk visibility monitor

Part of the book series: Translational Systems Sciences (TSS, volume 37)

  • 405 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book has unique features that set it apart from conventional books on the prevention of system failures in that it provides a method that views human activities from a meta-methodological perspective based upon an inter-disciplinary understanding of human activities. With these characteristics, the book also proposes a common methodological basis to apply to various problems surrounding society today such as an aging social infrastructure; the safety of food, medicine, and public transportation; and the creation of sustainable electricity and cybersecurity. Furthermore, since the failure of human activities is expressed in a three-dimensional space and the topological metrics are implemented, the failure trajectories can be quantitatively monitored in time series to take effective preventive measures. Considering the implementation of the topological metrics, the causes of each failure are classified into two dimensions of the degree of coupling between system elements and theinteraction between the target system and the external environment. Owing to the nature of the introduction of topological metrics, all individual and diverse systems can share general topological metrics. Consequently, understanding various failures over cross-industries is possible with the use of common meta-systemic language and mutual learning between different industries, and the solution of social problems can be effectively achieved. A system of system failures (SOSF) proposed and confirmed the effectiveness of this meta-methodology for information and communication technologies (ICT) systems and the SOSF is extended to human activity systems (SOHAS: system of human activity systems) as a whole. Therefore, the SOHAS becomes an academic foundation for theoretical research on meta-methodology, and it has an impact on practitioners to prevent system failures by accumulating knowledge of failures and learning from other industries.


Table of contents (10 chapters)

Authors and Affiliations

  • Department of Business Management, Daito Bunka University, Itabashi-ku, Japan

    Takafumi Nakamura

About the author

Takafumi Nakamura is a Special Appoint Professor of Management at Daito Bunka University and is renowned for his research in risk management. He has a doctoral degree in science from the Tokyo Institute of Technology and a master’s in management from McGill University. He was a Principal IT architect with Fujitsu, a member of their board, and President of the System Support Promotion Unit at Fujitsu Fsas Inc. He has over thirty years of experience in ICT infrastructure architecture in the Japanese market and five years of experience in the Australian as well as EMEA markets. His research interests include system management, software development, strategic maintenance planning, development support technologies, and risk management. He is playing a leadership role as an ICT architect, System Analyst, and System Thinker. He is fascinated by the connection between kendo (Japanese martial arts) and systems thinking and practices it several times a week.

Bibliographic Information

Publish with us