Skip to main content

Control and Optimization Methods for Complex System Resilience

  • Book
  • © 2023

Overview

  • Presents a scientific methodology for systematic resilience improvement of complex systems
  • Identifies effective approaches for risk identification, security assessment, system protection, and recovery
  • Provides practical case studies of relevant methods in power and energy systems

Part of the book series: Studies in Systems, Decision and Control (SSDC, volume 478)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

This book provides a systematic framework to enhance the ability of complex dynamical systems in risk identification, security assessment, system protection, and recovery with the assistance of advanced control and optimization technologies. By treating external disturbances as control inputs, optimal control approach is employed to identify disruptive disturbances, and online security assessment is conducted with Gaussian process and converse Lyapunov function. Model predictive approach and distributed optimization strategy are adopted to protect the complex system against critical contingencies. Moreover, the reinforcement learning method ensures the efficient restoration of complex systems from severe disruptions. This book is meant to be read and studied by researchers and graduates. It offers unique insights and practical methodology into designing and analyzing complex dynamical systems for resilience elevation.

Authors and Affiliations

  • School of Automation, China University of Geosciences, Wuhan, China

    Chao Zhai

About the author

Chao Zhai received the Bachelor's degree in automation engineering from Henan University in 2007 and earned the Master's degree in control theory and control engineering from Huazhong University of Science and Technology in 2009. He received the Ph.D. degree in complex system and control from the Institute of Systems Science, Chinese Academy of Sciences, Beijing, China, in June 2013. From July 2013 to August 2015, he was a post-doctoral fellow at the University of Bristol, Bristol, UK. He is a full professor at the School of Automation, China University of Geosciences, Wuhan, China. His research interests include multi-agent cooperative control, resilient system, social motor coordination, and geohazard monitoring. He is a senior member of IEEE. 

Bibliographic Information

Publish with us