Skip to main content

Photoelectron-Ion Correlation in Photoionization of a Hydrogen Molecule and Molecule-Photon Dynamics in a Cavity

  • Book
  • © 2022

Overview

  • Is nominated as an outstanding Ph.D. thesis by the University of Tokyo
  • Provides the numerical methods to simulate special molecular systems
  • Presents an introduction to help the reader not familiar with quantum science

Part of the book series: Springer Theses (Springer Theses)

  • 296 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (4 chapters)

  1. Introduction

  2. Correlation Between a Molecule and Photons

Keywords

About this book

This book presents the latest theoretical studies giving new predictions and interpretations on the quantum correlation in molecular dynamics induced by ultrashort laser pulses. The author quantifies the amount of correlation in terms of entanglement by employing methods developed in quantum information science, in particular applied to the photoionization of a hydrogen molecule. It is also revealed that the photoelectron–ion correlation affects the vibrational dynamics of the molecular ion and induces the attosecond-level time delay in the molecular vibration. Furthermore, the book also presents how molecular vibration can couple to photons in a plasmoic nanocavity.


Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between thephotoelectron and the molecular ion to describe the ion’s dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented. 



Authors and Affiliations

  • University of Tokyo, Tokyo, Japan

    Takanori Nishi

About the author

Takanori Nishi obtained his Ph.D. degree in 2021 from the department of chemistry at The University of Tokyo in the group of Professor Kaoru Yamanouchi. His research interest is ultrafast molecular dynamics, attosecond laser pulse, and quantum entanglement. 

Bibliographic Information

Publish with us