Skip to main content

UHMWPE Biomaterials for Joint Implants

Structures, Properties and Clinical Performance

  • Book
  • © 2019

Overview

  • Covers the fundamentals of the chemistry, structure, mechanical performance, crosslinking, and wear of UHMWPE and their significance for clinical applications
  • Timely reviews the latest progresses in both UHMWPE biomaterials and clinical outcome of recently approved UHMWPE biomaterials
  • Presents a new idea to minimize the biological response to wear debris through a drug delivery strategy
  • Helps biomedical engineers and implant professionals to better understand the future opportunities of UHMWPE biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering (SSBSE, volume 13)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book presents a comprehensive, state-of-the-art review of the latest progresses in UHMWPE biomaterials, which has been critical for the performance and longevity of joint implants. Oriented by clinical challenges to UHMWPE-based joint implants, it introduces the processing, crosslinking, structural manipulation, oxidation mechanism, stabilization, drug delivery, and wear, as well as clinical performance, biomechanics, and simulated studies of joint implant based on UHMWPE with low wear, which are aimed to tackle or minimize the adverse effect related to wear and wear debris. These contributions provide fundamentals of chemistry and physics of UHMWPEs to help understand the clinical performances of UHMWPE based joint implants. Perspectives to next generation UHMWPE to meet the unmet challenges in clinical use are included.


Similar content being viewed by others

Keywords

Table of contents (10 chapters)

Editors and Affiliations

  • Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, China

    Jun Fu

  • Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

    Zhong-Min Jin

  • Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

    Jin-Wu Wang

About the editors

Dr. Jun Fu is a Professor of Biomedical Polymer Materials at Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS). He obtained his PhD at Changchun Institute of Applied Chemistry CAS, and moved to the Max Planck Institute for Polymer Research, Mainz, Germany, and Massachusetts General Hospital/Harvard Medical School, before taking his current position in 2010. Dr. Fu’s expertise is diverse, including the synthesis, structural manipulation, and functionalization of polymer materials with extraordinary performances for biomedical devices.

Dr. Zhongmin Jin is a Professor of biotribology and biomechanics at Southwest Jiaotong University. He obtained his PhD at Leeds University. Dr. Jin has been applied tribological principles into artificial joints and has rich experience in the tribology of artificial joints. He is the winner of Water-Arbitration award, Bronze Medal of the Institution of Mechanical Engineers, UK. He has been the guest editor or editorial board member of Journal of Tribology, Journal of Bionic Engineering, Medical Engineering and Physics, and Journal of Orthopaedic Surgery and Research, etc. 

Dr. Jinwu Wang is a Professor and Chief Physician of Shanghai Ninth People's Hospital, affiliated to School of Medicine, Shanghai Jiao Tong University (SJTU), China. Dr. Wang is also an Adjunct Professor of School of Biomedical Engineering, SJTU. He is the principle investigator of 4 national research projects from Chinese Ministry of Science and Technology, and NSFC, and 10 provincial research projects. He has participated in editing 7 books (Associate Editor of 3 books), applied for 5 national invention patents, and published over 40 journal articles. As the leading researcher, Dr. Wang has won the First Prize of Shanghai Medicine Science and Technology Advancement Award, and the First Prize of Chinese Medical Science and Technology Award. He is a contributing Editor of Chinese Journal ofOrthopaedic Trauma, Editor of Journal of Clinical Rehabilitative Tissue Engineering Research, and a Standing Committee Member of Traumatic Orthopedics Academy affiliated to Chinese Association of Rehabilitation of Disabled Persons. His main research interests include: Neural prostheses; implantable electrical stimulators; medical rehabilitation robotics; artificial joints; and trauma biomaterials.

Bibliographic Information

Publish with us