Skip to main content

Robust Computer Vision

Theory and Applications

  • Book
  • © 2003

Overview

Part of the book series: Computational Imaging and Vision (CIVI, volume 26)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

From the foreword by Thomas Huang:
"During the past decade, researchers in computer vision have found that probabilistic machine learning methods are extremely powerful. This book describes some of these methods. In addition to the Maximum Likelihood framework, Bayesian Networks, and Hidden Markov models are also used. Three aspects are stressed: features, similarity metric, and models. Many interesting and important new results, based on research by the authors and their collaborators, are presented.

Although this book contains many new results, it is written in a style that suits both experts and novices in computer vision."

Similar content being viewed by others

Keywords

Table of contents (7 chapters)

Authors and Affiliations

  • LIACS Media Lab, Leiden University, Leiden, The Netherlands

    Nicu Sebe, Michael S. Lew

About the authors

Nicu Sebe received his PhD degree from Leiden University in 2001. Currently, he is an Assistant Professor at Leiden University in the Netherlands. His main interest is in the fields of computer vision and pattern recognition, in particular content-based retrieval and robust techniques in computer vision. He was co-editing the proceedings of the International Conference on Image and Video Retrieval 2002. He is also acting as the technical program co-chair for the International Conference on Image and Video Retrieval 2003.

Michael S. Lew received his PhD degree in Electrical Engineering from the University of Illinois at Urbana-Champaign. He is currently an Associate Professor at Leiden University in the Netherlands. He has published over 100 scientific papers and helped organize several large conferences including IEEE Multimedia, ACM Multimedia, and the International Conference on Image and Video Retrieval.

Bibliographic Information

Publish with us