Nonlinear and Stochastic Dynamics of Compliant Offshore Structures

  • Seon Mi Han
  • Haym Benaroya

Part of the Solid Mechanics and Its Applications book series (SMIA, volume 98)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Seon Mi Han, Haym Benaroya
    Pages 1-12
  3. Seon Mi Han, Haym Benaroya
    Pages 29-93
  4. Seon Mi Han, Haym Benaroya
    Pages 95-110
  5. Seon Mi Han, Haym Benaroya
    Pages 111-186
  6. Seon Mi Han, Haym Benaroya
    Pages 187-228
  7. Seon Mi Han, Haym Benaroya
    Pages 229-231
  8. Back Matter
    Pages 233-274

About this book

Introduction

The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di­ mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi­ ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil­ ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa­ tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa­ rameters. Beam models are useful as representations of complex struc­ tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa­ tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory.

Keywords

Vibration mechanics model modeling numerical methods structural mechanics

Authors and affiliations

  • Seon Mi Han
    • 1
  • Haym Benaroya
    • 2
  1. 1.Department of Applied Ocean Physics and EngineeringWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Department of Mechanical and Aerospace EngineeringRutgers, the State University of New JerseyPiscatawayUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-94-015-9912-2
  • Copyright Information Springer Science+Business Media B.V. 2002
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-90-481-5999-4
  • Online ISBN 978-94-015-9912-2
  • Series Print ISSN 0925-0042
  • About this book