Skip to main content

Ocean Modeling and Parameterization

  • Book
  • © 1998

Overview

Part of the book series: Nato Science Series C: (ASIC, volume 516)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (18 chapters)

Keywords

About this book

The realism of large scale numerical ocean models has improved dra­ matically in recent years, in part because modern computers permit a more faithful representation of the differential equations by their algebraic analogs. Equally significant, if not more so, has been the improved under­ standing of physical processes on space and time scales smaller than those that can be represented in such models. Today, some of the most challeng­ ing issues remaining in ocean modeling are associated with parameterizing the effects of these high-frequency, small-space scale processes. Accurate parameterizations are especially needed in long term integrations of coarse resolution ocean models that are designed to understand the ocean vari­ ability within the climate system on seasonal to decadal time scales. Traditionally, parameterizations of subgrid-scale, high-frequency mo­ tions in ocean modeling have been based on simple formulations, such as the Reynolds decomposition with constant diffusivity values. Until recently, modelers were concerned with first order issues such as a correct represen­ tation of the basic features of the ocean circulation. As the numerical simu­ lations become better and less dependent on the discretization choices, the focus is turning to the physics of the needed parameterizations and their numerical implementation. At the present time, the success of any large scale numerical simulation is directly dependent upon the choices that are made for the parameterization of various subgrid processes.

Reviews

`... I strongly recommend this book for the library of each ocean climate modeler, indeed, for any climate modeler. It represents much more than a simple conference/workshop proceeding and may well fit into a course discussing physical parameterizations used in ocean modeling. It is my hope that such schools/workshops on climate-related science continue well into the future, thus producing more volumes of comparable quality and importance.'
Bulletin of the American Meteorological Society, 81:3 (2000)

Editors and Affiliations

  • Department of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, USA

    Eric P. Chassignet

  • Centre National de la Recherche Scientifique, Laboratoire des Écoulements Géophysiques et Industriels, Grenoble, France

    Jacques Verron

Bibliographic Information

Publish with us