© 2012

7th RILEM International Conference on Cracking in Pavements

Mechanisms, Modeling, Testing, Detection and Prevention Case Histories

  • A. Scarpas
  • N. Kringos
  • I. Al-Qadi
  • Loizos A.
Conference proceedings

Part of the RILEM Bookseries book series (RILEM, volume 4)

Table of contents

  1. Front Matter
    Pages 1-18
  2. Mugurel I. Turos, Augusto Cannone Falchetto, Gabriele Tebaldi, Mihai O. Marasteanu
    Pages 11-20
  3. Ratiba Mitiche_Kettab, Azzouzi Boulanouar, Abderrahim Bali
    Pages 21-30
  4. M. Pettinari, C. Sangiorgi, F. Petretto, F. Picariello
    Pages 31-39
  5. R. Miró, A. Martínez, F. Pérez-Jiménez, R. Botella, G. Valdés
    Pages 61-69
  6. M. O. Hamzah, M. R. M. Hasan, M. F. C. van de Ven, J. L. M. Voskuilen
    Pages 71-81
  7. P. M. Muraya, C. Thodesen
    Pages 83-91
  8. O. M. Ogundipe, N. H. Thom, Andrew C. Collop, J. Richardson
    Pages 93-102
  9. Ebrahim Hesami, Denis Jelagin, Björn Birgisson, Niki Kringos
    Pages 103-113
  10. Enio F. Amorim, Antônio C. de Lara Fortes, Luís F. M. Ribeiro
    Pages 115-124
  11. Ken Grzybowski, Geoffrey M. Rowe, Stan Prince
    Pages 125-135
  12. Hussain Bahia, Hassan Tabatabaee, Raul Velasquez
    Pages 147-156
  13. John Laurent, Jean François Hébert, Daniel Lefebvre, Yves Savard
    Pages 157-167
  14. Yichang (James) Tsai, Chenglong Jiang, Zhaohua Wang
    Pages 169-178
  15. Jean-Michel Simonin, Cyrille Fauchard, Pierre Hornych, Vincent Guilbert, Jean-Pierre Kerzrého, Stéphane Trichet
    Pages 179-190

About these proceedings


In the recent past, new materials, laboratory and in-situ testing methods and construction techniques have been introduced. In addition, modern computational techniques such as the finite element method enable the utilization of sophisticated constitutive models for realistic model-based predictions of the response of pavements. The 7th RILEM International Conference on Cracking of Pavements provided an international forum for the exchange of ideas, information and knowledge amongst experts involved in computational analysis, material production, experimental characterization, design and construction of pavements.

All submitted contributions were subjected to an exhaustive refereed peer review procedure by the Scientific Committee, the Editors and a large group of international experts in the topic. On the basis of their recommendations, 129 contributions which best suited the goals and the objectives of the Conference were chosen for presentation and inclusion in the Proceedings.

The strong message that emanates from the accepted contributions is that, by accounting for the idiosyncrasies of the response of pavement engineering materials, modern sophisticated constitutive models in combination with new experimental material characterization and construction techniques provide a powerful arsenal for understanding and designing against the mechanisms and the processes causing cracking and pavement response deterioration. As such they enable the adoption of truly "mechanistic" design methodologies.

The papers represent the following topics: Laboratory evaluation of asphalt concrete cracking potential; Pavement cracking detection;  Field investigation of pavement cracking; Pavement cracking modeling response, crack analysis and damage prediction; Performance of concrete pavements and white toppings; Fatigue cracking and damage characterization of asphalt concrete; Evaluation of the effectiveness of asphalt concrete modification; Crack growth parameters and mechanisms; Evaluation, quantification and modeling of asphalt healing properties; Reinforcement and interlayer systems for crack mitigation;  Thermal and low temperature cracking of pavements; and Cracking propensity of WMA and recycled asphalts.


computational modeling cracking fatigue pavements pavements rilem

Editors and affiliations

  • A. Scarpas
    • 1
  • N. Kringos
    • 2
  • I. Al-Qadi
    • 3
  • Loizos A.
    • 4
  1. 1., Faculty of Civil Eng. & GeosciencesDelft University of TechnologyDelftNetherlands
  2. 2.KTH Royal Institute of TechnologyStockholmSweden
  3. 3.University of Illinois Urbana ChampaignUrbanaUSA
  4. 4., Laboratory of Highway EngineeringNational Technical University of AthensAthensGreece

Bibliographic information