Skip to main content
Birkhäuser

Elliptic Equations: An Introductory Course

  • Textbook
  • © 2009

Overview

  • Simple presentation
  • Large spectrum of issues on elliptic equations
  • Many original results
  • Independent chapters
  • Includes supplementary material: sn.pub/extras

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher (BAT)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

The aim of this book is to introduce the reader to different topics of the theory of elliptic partial differential equations by avoiding technicalities and refinements. Apart from the basic theory of equations in divergence form it includes subjects such as singular perturbation problems, homogenization, computations, asymptotic behaviour of problems in cylinders, elliptic systems, nonlinear problems, regularity theory, Navier-Stokes system, p-Laplace equation. Just a minimum on Sobolev spaces has been introduced, and work or integration on the boundary has been carefully avoided to keep the reader's attention on the beauty and variety of these issues.

The chapters are relatively independent of each other and can be read or taught separately. Numerous results presented here are original and have not been published elsewhere. The book will be of interest to graduate students and faculty members specializing in partial differential equations.

Similar content being viewed by others

Keywords

Table of contents (19 chapters)

  1. More Advanced Theory

Reviews

From the reviews:

“The present book is devoted to recent advanced results and methods in the theory of linear and nonlinear elliptic equations and systems. … It is written with great care and is accessible to a large audience including graduate and postgraduate students and researchers in the field of partial differential equations. … In conclusion, the reviewer may recommend the book as a very good reference for those seeking, new, modern, and powerful techniques in the modern approach of nonlinear elliptic partial differential equations.” (Vicenţiu D. Rădulescu, Zentralblatt MATH, Vol. 1171, 2009)

“The book introduces the reader to a broad spectrum of topics in the theory of elliptic partial differential equations in a simple and systematic way. It provides a comprehensive introductory course to the theory, each chapter being supplemented with interesting exercises for the reader. … The way of presentation of the material … keep the reader’s attention on the beauty and variety of the issues. … a very valuable position in the field of elliptic partial differential equations.” (Irena Pawłow, Control and Cybernetics, Vol. 39 (3), 2010)

Authors and Affiliations

  • Institute of Mathematics, University of Zürich, Zürich, Switzerland

    Michel Chipot

Bibliographic Information

Publish with us