Skip to main content
Birkhäuser

The Maximum Principle

  • Book
  • © 2007

Overview

  • The only book containing a detailed description of modern work on the maximum principle for nonlinear elliptic differential equations
  • Contains applications to the celebrated symmetry question, to elliptic dead core phenomena, uniqueness theorems, the Harnack inequality and the compact support principle
  • Includes supplementary material: sn.pub/extras

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications (PNLDE, volume 73)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

Maximum principles are bedrock results in the theory of second order elliptic equations. This principle, simple enough in essence, lends itself to a quite remarkable number of subtle uses when combined appropriately with other notions. Intended for a wide audience, the book provides a clear and comprehensive explanation of the various maximum principles available in elliptic theory, from their beginning for linear equations to recent work on nonlinear and singular equations.

Similar content being viewed by others

Keywords

Table of contents (8 chapters)

Reviews

Aus den Rezensionen: “Das Maximumprinzip ist das stärkste Hilfsmittel, um Eindeutigkeit und stetige Abhängigkeit der Lösungen skalarer elliptischer und parabolischer Differentialgleichungen 2. Ordnung zu beweisen. ... In der Tat geht das Buch von Pucci-Serrin das Thema von Neuem an: Schwache Lösungen und Sobolewräume werden verwendet … Ohne Übertreibung kann das Buch als Juwel in der Reihe ‘Progress in Nonlinear Differential Equations and Their Applications‘ bezeichnet werden ...“ (N.Ortner, in: IMN Internationale Mathematische Nachrichten, April/2010, Issue 213, S. 55)

Authors and Affiliations

  • Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia, Italy

    Patrizia Pucci

  • Department of Mathematics, University of Minnesota, Minneapolis, USA

    James Serrin

Bibliographic Information

Publish with us