Étale Cohomology of Rigid Analytic Varieties and Adic Spaces

  • Roland Huber
Part of the Aspects of Mathematics book series (ASMA, volume 30)

Table of contents

  1. Front Matter
    Pages ii-x
  2. Roland Huber
    Pages 36-107
  3. Roland Huber
    Pages 162-237
  4. Roland Huber
    Pages 238-268
  5. Roland Huber
    Pages 269-323
  6. Roland Huber
    Pages 324-359
  7. Roland Huber
    Pages 360-398
  8. Back Matter
    Pages 435-450

About this book

Introduction

The aim of this book is to give an introduction to adic spaces and to develop systematically their étale cohomology. First general properties of the étale topos of an adic space are studied, in particular the points and the constructible sheaves of this topos. After this the basic results on the étale cohomology of adic spaces are proved: base change theorems, finiteness, Poincaré duality, comparison theorems with the algebraic case.  

Keywords

Dualität Endlichkeit Homologie Kohomologie Lehrsatz

Authors and affiliations

  • Roland Huber
    • 1
  1. 1.Fachbereich Mathematik Bergische UniversitätGesamthochschule WuppertalWuppertalGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-663-09991-8
  • Copyright Information Springer Fachmedien Wiesbaden 1996
  • Publisher Name Vieweg+Teubner Verlag, Wiesbaden
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-663-09992-5
  • Online ISBN 978-3-663-09991-8
  • Series Print ISSN 0179-2156
  • About this book