Skip to main content

Likelihood and Bayesian Inference

With Applications in Biology and Medicine

  • Textbook
  • © 2020
  • Latest edition

Overview

  • Offers an easily accessible and comprehensive introduction to model-based statistical inference
  • Provides real-world applications in biology, medicine and epidemiology with programming examples in the open-source software R
  • Includes exercises at the end of each chapter, for which solutions are available on the website
  • Includes a comprehensive appendix covering the necessary mathematical background and various R-programming tips

Part of the book series: Statistics for Biology and Health (SBH)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This richly illustrated textbook covers modern statistical methods with applications in medicine, epidemiology and biology. Firstly, it discusses the importance of statistical models in applied quantitative research and the central role of the likelihood function, describing likelihood-based inference from a frequentist viewpoint, and exploring the properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic. In the second part of the book, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. It includes a separate chapter on modern numerical techniques for Bayesian inference, and also addresses advanced topics, such as model choice and prediction from frequentist and Bayesian perspectives. This revised edition of the book “Applied Statistical Inference” has been expanded to include new material on Markov models for time series analysis. It also features a comprehensive appendix covering the prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis, and each chapter is complemented by exercises. The text is primarily intended for graduate statistics and biostatistics students with an interest in applications.



Similar content being viewed by others

Keywords

Table of contents (10 chapters)

Reviews

“If you need a guidebook to follow when you need to refresh past statistical concepts from your memory, or even learn the rationale behind a method you are not familiar with, this user-friendly book will give you a perfect starting point.” (Pablo Hernández-Alonso, ISCB News, iscb.info, June, 2022)

Authors and Affiliations

  • Epidemiology, Biostatistics & Prevention, University of Zurich, Zürich, Switzerland

    Leonhard Held

  • Inst. of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland

    Daniel Sabanés Bové

About the authors

Leonhard Held is a Full Professor of Biostatistics, Director of the Master’s Program in Biostatistics and Chair of the Center for Reproducible Science at the University of Zurich, Switzerland. He has published several books and numerous articles on statistical methodology, applied statistics and biomedical research and teaches undergraduate and graduate-level courses in Biostatistics and Medical Statistics.

Daniel Sabanés Bové completed his PhD in Statistics at the University of Zurich under the supervision of Leonhard Held. He started his career as a biostatistician in oncology drug development at Hoffmann-La Roche in 2013, and has been a data scientist at Google since 2018.


Bibliographic Information

Publish with us