Skip to main content

Demystifying Climate Models

A Users Guide to Earth System Models

  • Book
  • Open Access
  • © 2016

You have full access to this open access Book

Overview

  • A guide to climate simulation and prediction for the non-specialist
  • Includes an introduction to climate science and to the essentials of the problem of predicting climate
  • Intended as an entry point for understanding how models work and for helping judging uncertainties in their output

Part of the book series: Earth Systems Data and Models (ESDM, volume 2)

Buy print copy

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

About this book

This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.

Similar content being viewed by others

Keywords

Table of contents (13 chapters)

  1. Basic Principles and the Problem of Climate Forecasts

  2. Model Mechanics

  3. Using Models

Authors and Affiliations

  • Nat'l Cntr For Atmospheric Research, Boulder, USA

    Andrew Gettelman

  • Climate and Space Sciences and Engineeri, University of Michigan, Ann Arbor, USA

    Richard B. Rood

About the authors

Andrew Gettelman is a Scientist in the Climate and Global Dynamics and Atmospheric Chemistry and Modeling Laboratories at the National Center for Atmospheric Research (NCAR). He is actively involved in developing atmosphere and chemistry components for global climate models at NCAR. Dr. Gettelman specializes in understanding and simulating cloud processes and their impact on climate, especially ice clouds. He has numerous publications on cloud physics representations in global models, as well as research on climate forcing and feedbacks. He has participated in several international assessments of climate models, particularly for assessing atmospheric chemistry. Gettelman holds a doctorate in Atmospheric Science from the University of Washington, Seattle. He is a recent recipient of the American Geophysical Union Ascent Award, and is a Thompson-Reuters Highly Cited Researcher.

 

Richard B. Rood is a Professor in the Department of Climate and Space Sciences and Engineering (CLaSP) at the University of Michigan. He is also appointed in the School of Natural Resources and Environment. Prior to joining the University of Michigan, he worked in modeling and high performance computing at the National Aeronautics and Space Administration (NASA). His recent research is focused on the usability of climate knowledge and data in management planning and practice. He has started classes in climate-change problem solving, climate change uncertainty in decision making, climate-change informatics (with Paul Edwards). In addition to publications on numerical models, his recent publications include software engineering, informatics, political science, social science, forestry and public health. Rood’s professional degree is in Meteorology from Florida State University. He recently served on the National Academy of Sciences Committee on A National Strategy for Advancing Climate Modeling. He writes expert blogs on climate change science and problem solving for the Weather Underground Richard Rood is a Fellow of American Meteorological Society and a winner of the World Meteorological Organization’s Norbert Gerbier Award.

Bibliographic Information

Publish with us