Representation Theory and Noncommutative Harmonic Analysis II

Homogeneous Spaces, Representations and Special Functions

  • A. A. Kirillov

Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 59)

Table of contents

  1. Front Matter
    Pages i-vii
  2. V. F. Molchanov
    Pages 1-135
  3. A. U. Klimyk, N. Ya. Vilenkin
    Pages 137-259
  4. Back Matter
    Pages 261-269

About this book

Introduction

This EMS volume contains two contributions: the first one, "Harmonic Analysis on Homogeneous Spaces", is written by V.F.Molchanov, the second one, "Representations of Lie Groups and Special Functions", by N.Ya.Vilenkin and A.U.Klimyk. Molchanov focuses on harmonic analysis on semi-simple spaces, whereas Vilenkin and Klimyk treat group theoretical methods also with respect to integral transforms. Both contributions are surveys introducing readers to the above topics and preparing them for the study of more specialised literature. This book will be very useful to mathematicians, theoretical physicists and also to chemists dealing with quantum systems.

Keywords

Fourier Transformation Fourier transform Integraltransformation Orthogonale Polynome Poissonsche Transformation Representation theory Theoretical physics calculus integral transforms orthogonal polynomials poisson transform

Editors and affiliations

  • A. A. Kirillov
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Moscow University, MehmatMoscowRussia

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-09756-4
  • Copyright Information Springer-Verlag Berlin Heidelberg 1995
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-08126-2
  • Online ISBN 978-3-662-09756-4
  • Series Print ISSN 0938-0396
  • About this book