Advertisement

Lectures on the Geometry of Numbers

  • Carl Ludwig Siegel
  • Komaravolu Chandrasekharan

Table of contents

  1. Front Matter
    Pages I-X
  2. Minkowski’s Two Theorems

    1. Front Matter
      Pages 1-1
    2. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 3-11
    3. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 12-24
    4. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 25-32
    5. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 33-40
  3. Linear Inequalities

    1. Front Matter
      Pages 41-41
    2. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 43-52
    3. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 53-63
    4. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 64-71
    5. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 72-80
    6. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 81-92
  4. Theory of Reduction

    1. Front Matter
      Pages 93-93
    2. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 95-105
    3. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 106-117
    4. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 118-126
    5. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 127-137
    6. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 138-144
    7. Carl Ludwig Siegel, Komaravolu Chandrasekharan
      Pages 145-154
  5. Back Matter
    Pages 155-162

About this book

Introduction

Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.

Keywords

Volume algebra arithmetic boundary element method geometry requirement requirements theorem university

Authors and affiliations

  • Carl Ludwig Siegel
  • Komaravolu Chandrasekharan
    • 1
  1. 1.MathematikETH ZürichZürichSwitzerland

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-08287-4
  • Copyright Information Springer-Verlag Berlin Heidelberg 1989
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-08076-0
  • Online ISBN 978-3-662-08287-4
  • Buy this book on publisher's site