Skip to main content

Boundary Value Problems in Linear Viscoelasticity

  • Textbook
  • © 1988

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

The classical theories of Linear Elasticity and Newtonian Fluids, though trium­ phantly elegant as mathematical structures, do not adequately describe the defor­ mation and flow of most real materials. Attempts to characterize the behaviour of real materials under the action of external forces gave rise to the science of Rheology. Early rheological studies isolated the phenomena now labelled as viscoelastic. Weber (1835, 1841), researching the behaviour of silk threats under load, noted an instantaneous extension, followed by a further extension over a long period of time. On removal of the load, the original length was eventually recovered. He also deduced that the phenomena of stress relaxation and damping of vibrations should occur. Later investigators showed that similar effects may be observed in other materials. The German school referred to these as "Elastische Nachwirkung" or "the elastic aftereffect" while the British school, including Lord Kelvin, spoke ofthe "viscosityofsolids". The universal adoption of the term "Viscoelasticity", intended to convey behaviour combining proper­ ties both of a viscous liquid and an elastic solid, is of recent origin, not being used for example by Love (1934), though Alfrey (1948) uses it in the context of polymers. The earliest attempts at mathematically modelling viscoelastic behaviour were those of Maxwell (1867) (actually in the context of his work on gases; he used this model for calculating the viscosity of a gas) and Meyer (1874).

Similar content being viewed by others

Keywords

Table of contents (7 chapters)

Authors and Affiliations

  • Roads Division, National Institute for Physical Planning and Construction Research, St. Martin’s House, Dublin 4, Ireland

    John M. Golden

  • Department of Mathematics and Statistics, Simon Fraser University, Burnaby, Canada

    George A. C. Graham

Bibliographic Information

Publish with us