Authors:
Describes the important generalisation of the original Weil conjectures
For the first time the authors describe Deligne's work in the framework of the sheaf theoretic theory of perverse sheaves
The l-adic Fourier transform is introduced as a powerful tool
Presents important applications
Includes supplementary material: sn.pub/extras
Part of the book series: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics (MATHE3, volume 42)
Buy it now
Buying options
Tax calculation will be finalised at checkout
Other ways to access
This is a preview of subscription content, access via your institution.
Table of contents (7 chapters)
-
Front Matter
-
Back Matter
About this book
Keywords
- Deligne's Fourier transform
- Deline's theory of weights and of purity
- Etale cohomology
- Fourier transform
- Hard Lefschetz Theorem
- Springer representations Weyl groups
- boundary element method
- cohomology
- estimates of exponential sums
- form
- framework
- generalized Weil conjecture
- middle perverse sheaves
- proof
- sheaves
Authors and Affiliations
-
Institut für Mathematik und Informatik, Universität Mannheim, Mannheim, Germany
Reinhardt Kiehl
-
Mathematisches Institut, Universität Heidelberg, Heidelberg, Germany
Rainer Weissauer
Bibliographic Information
Book Title: Weil Conjectures, Perverse Sheaves and ℓ-adic Fourier Transform
Authors: Reinhardt Kiehl, Rainer Weissauer
Series Title: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
DOI: https://doi.org/10.1007/978-3-662-04576-3
Publisher: Springer Berlin, Heidelberg
-
eBook Packages: Springer Book Archive
Copyright Information: Springer-Verlag Berlin Heidelberg 2001
Hardcover ISBN: 978-3-540-41457-5Published: 14 August 2001
Softcover ISBN: 978-3-642-07472-1Published: 19 October 2010
eBook ISBN: 978-3-662-04576-3Published: 14 March 2013
Series ISSN: 0071-1136
Series E-ISSN: 2197-5655
Edition Number: 1
Number of Pages: XII, 375
Topics: Algebraic Geometry, Group Theory and Generalizations, K-Theory