Advertisement

Operator Algebras and Quantum Statistical Mechanics

Equilibrium States. Models in Quantum Statistical Mechanics

  • Ola Bratteli
  • Derek W. Robinson

Part of the Texts and Monographs in Physics book series (TMP)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. States in Quantum Statistical Mechanics

    1. Front Matter
      Pages 1-1
    2. Ola Bratteli, Derek W. Robinson
      Pages 3-5
    3. Ola Bratteli, Derek W. Robinson
      Pages 6-75
    4. Ola Bratteli, Derek W. Robinson
      Pages 76-143
    5. Ola Bratteli, Derek W. Robinson
      Pages 144-216
  3. Models of Quantum Statistical Mechanics

    1. Front Matter
      Pages 235-235
    2. Ola Bratteli, Derek W. Robinson
      Pages 237-238
    3. Ola Bratteli, Derek W. Robinson
      Pages 239-352
    4. Ola Bratteli, Derek W. Robinson
      Pages 353-421
    5. Ola Bratteli, Derek W. Robinson
      Pages 422-423
  4. Back Matter
    Pages 463-517

About this book

Introduction

For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes the general structure of equilibrium states, the KMS-condition and stability, quantum spin systems and continuous systems.
Major changes in the new edition relate to Bose--Einstein condensation, the dynamics of the X-Y model and questions on phase transitions. Notes and remarks have been considerably augmented.

Keywords

Algebra Algebras Bose-Einstein condensation Operator Operatoralgebra Physik Quantenmechanik Quantenstatistik Statistische Mechanik phasetransition quantum statistical mechanics statistical physics

Authors and affiliations

  • Ola Bratteli
    • 1
  • Derek W. Robinson
    • 2
  1. 1.Matematisk InstituttUniversitetet i OsloOsloNorway
  2. 2.School of Mathematical SciencesAustralian National UniversityCanberraAustralia

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-03444-6
  • Copyright Information Springer-Verlag Berlin Heidelberg 1997
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-08257-3
  • Online ISBN 978-3-662-03444-6
  • Series Print ISSN 1864-5879
  • Series Online ISSN 1864-5887
  • Buy this book on publisher's site