Methoden der Mathematischen Physik II

  • Authors
  • R. Courant
  • D. Hilbert

Part of the Heidelberger Taschenbücher book series (HTB, volume 31)

Table of contents

About this book

Introduction

VIII über den Inhalt im einzelnen unterrichtet das ausführliche Ver­ zeichnis. Zur Form ist etwas Grundsätzliches zu sagen: Das klassische Ideal einer gewissermaßen atomistischen Auffassung der Mathematik ver­ langt, den Stoff in Form von Voraussetzungen, Sätzen und Beweisen zu kondensieren. Dabei ist der innere Zusammenhang und die Motivierung der Theorie nicht unmittelbar Gegenstand der Darstellung. In kom­ plementärer Weise kann man ein mathematisches Gebiet als stetiges Gewebe von Zusammenhängen betrachten, bei dessen Beschreibung die Methode und die Motivierung in den Vordergrund treten und die Kri­ stallisierung der Einsichten in isolierte scharf umrissene Sätze erst eine sekundäre Rolle spielt. Wo eine Synthese beider Auffassungen untunlich schien, habe ich den zweiten Gesichtspunkt bevorzugt. New Rochelle, New York, 24. Oktober 1937. R. Courant. Inhaltsverzeichnis. Erstes Kapitel. Vorbereitung. - Grundbegriffe. § I. Orientierung über die Mannigfaltigkeit der Lösungen 2 1. Beispiele S. 2. - 2. Differentialgleichungen zu gegebenen Funk­ tionenscharen und -familien S. 7. § 2. Systeme von Differentialgleichungen ............... 10 1. Problem der Äquivalenz von Systemen und einzelnen Differential­ 2. Bestimmte, überbestimmte, unterbestimmte gleichungen S. 10. - Systeme S. 12. § J. Integrationsmethoden bei speziellen Differentialgleichungen. . . . . . 14 1. Separation der Variablen S. 14. - 2. Erzeugung weiterer Lösungen durch Superposition. Grundlösung der Wärmeleitung. Poissons Integral S.16. § 4. Geometrische Deutung einer partiellen Differentialgleichung erster Ord­ nung mit zwei unabhängigen Variablen. Das vollständige Integral . . 18 1. Die geometrische Deutung einer partiellen Differentialgleichung erster Ordnung S. 18. - 2. Das vollständige Integral S. 19. - 3. Singuläre Integrale S. 20.

Keywords

Differentialgleichung Elastizität Mathematik Mathematische Physik Physik Potential Synthese System

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-662-00844-7
  • Copyright Information Springer-Verlag Berlin Heidelberg 1968
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-04178-8
  • Online ISBN 978-3-662-00844-7
  • Series Print ISSN 0073-1684
  • About this book