Skip to main content

Polynomial Formal Verification of Approximate Functions

  • Book
  • © 2023


Part of the book series: BestMasters (BEST)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

During the development of digital circuits, their functional correctness has to be ensured, for which formal verification methods have been established. However, the verification process using formal methods can have an exponential time or space complexity, causing the verification to fail. While exponential in general, recently it has been proven that the verification complexity of several circuits is polynomially bounded. Martha Schnieber proves the polynomial verifiability of several approximate circuits, which are beneficial in error-tolerant applications, where the circuit approximates the exact function in some cases, while having a lower delay or being more area-efficient. Here, upper bounds for the BDD size and the time and space complexity are provided for the verification of general approximate functions and several state-of-the-art approximate adders.


Table of contents (6 chapters)

Authors and Affiliations

  • Bremen, Germany

    Martha Schnieber

About the author

About the author 
Martha Schnieber is working as a research assistant in the Group of Computer Architecture at the University of Bremen.

Bibliographic Information

Publish with us