Riemannian Geometry

  • Sylvestre Gallot
  • Dominique Hulin
  • Jacques Lafontaine

Part of the Universitext book series (UTX)

Table of contents

  1. Front Matter
    Pages I-XI
  2. Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine
    Pages 1-48
  3. Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine
    Pages 49-101
  4. Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine
    Pages 102-154
  5. Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine
    Pages 155-184
  6. Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine
    Pages 185-240
  7. Back Matter
    Pages 241-250

About this book


Traditional point of view: pinched manifolds 147 Almost flat pinching 148 Coarse point of view: compactness theorems of Gromov and Cheeger 149 K. CURVATURE AND REPRESENTATIONS OF THE ORTHOGONAL GROUP Decomposition of the space of curvature tensors 150 Conformally flat manifolds 153 The second Bianchi identity 154 CHAPITRE IV : ANALYSIS ON MANIFOLDS AND THE RICCI CURVATURE A. MANIFOLDS WITH BOUNDARY Definition 155 The Stokes theorem and integration by parts 156 B. BISHOP'S INEQUALITY REVISITED 159 Some commutations formulas Laplacian of the distance function 160 Another proof of Bishop's inequality 161 The Heintze-Karcher inequality 162 C. DIFFERENTIAL FORMS AND COHOMOLOGY The de Rham complex 164 Differential operators and their formal adjoints 165 The Hodge-de Rham theorem 167 A second visit to the Bochner method 168 D. BASIC SPECTRAL GEOMETRY 170 The Laplace operator and the wave equation Statement of the basic results on the spectrum 172 E. SOME EXAMPLES OF SPECTRA 172 Introduction The spectrum of flat tori 174 175 Spectrum of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop's inequality and coarse estimates 181 Some consequences of Bishop's theorem 182 Lower bounds for the first eigenvalue 184 CHAPTER V : RIEMANNIAN SUBMANIFOLDS A. CURVATURE OF SUBMANIFOLDS Introduction 185 Second fundamental form 185 Curvature of hypersurfaces 187 Application to explicit computations of curvature 189 B. CURVATURE AND CONVEXITY 192 The Hadamard theorem C.


Riemannian geometry Riemannian goemetry covariant derivative curvature manifold relativity

Authors and affiliations

  • Sylvestre Gallot
    • 1
  • Dominique Hulin
    • 2
  • Jacques Lafontaine
    • 3
  1. 1.Université de SavoieChambéry CedexFrance
  2. 2.Centre d’Orsay, MathématiqueUniversité Paris11Orsay CedexFrance
  3. 3.U.F.R. de MathématiquesUniversité Paris 7Paris Cedex 05France

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-97026-9
  • Copyright Information Springer-Verlag Berlin Heidelberg 1987
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-17923-8
  • Online ISBN 978-3-642-97026-9
  • Series Print ISSN 0172-5939
  • Series Online ISSN 2191-6675
  • About this book