Skip to main content

Minimization Methods for Non-Differentiable Functions

  • Book
  • © 1985


Part of the book series: Springer Series in Computational Mathematics (SSCM, volume 3)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 9.99 USD 69.99
Discount applied Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

In recent years much attention has been given to the development of auto­ matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math­ ematical software packages for al,ltomatic systems of various levels and pur­ poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the ~xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con­ struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author's work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif­ ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods.

Similar content being viewed by others


Table of contents (5 chapters)

Authors and Affiliations

  • Institute of Cybernetics of the Academy of Sciences of the Ukrainian SSR, Kiev-207, USSR

    Naum Zuselevich Shor

Bibliographic Information

Publish with us