Advertisement

Symmetry and Combinatorial Enumeration in Chemistry

  • Shinsaku Fujita

Table of contents

  1. Front Matter
    Pages I-IX
  2. Shinsaku Fujita
    Pages 1-6
  3. Shinsaku Fujita
    Pages 7-15
  4. Shinsaku Fujita
    Pages 17-27
  5. Shinsaku Fujita
    Pages 29-43
  6. Shinsaku Fujita
    Pages 45-61
  7. Shinsaku Fujita
    Pages 89-100
  8. Shinsaku Fujita
    Pages 101-115
  9. Shinsaku Fujita
    Pages 117-133
  10. Shinsaku Fujita
    Pages 135-145
  11. Shinsaku Fujita
    Pages 147-161
  12. Shinsaku Fujita
    Pages 163-179
  13. Shinsaku Fujita
    Pages 181-195
  14. Shinsaku Fujita
    Pages 197-213
  15. Shinsaku Fujita
    Pages 215-225
  16. Shinsaku Fujita
    Pages 227-240
  17. Shinsaku Fujita
    Pages 241-253
  18. Shinsaku Fujita
    Pages 255-270
  19. Shinsaku Fujita
    Pages 271-295
  20. Shinsaku Fujita
    Pages 297-320
  21. Shinsaku Fujita
    Pages 321-326
  22. Shinsaku Fujita
    Pages 327-333
  23. Shinsaku Fujita
    Pages 335-342
  24. Shinsaku Fujita
    Pages 343-350
  25. Shinsaku Fujita
    Pages 351-358
  26. Back Matter
    Pages 359-368

About this book

Introduction

This book is written to introduce a new approach to stereochemical problems and to combinatorial enumerations in chemistry. This approach is based on group the­ ory, but different from conventional ways adopted by most textbooks on chemical group theory. The difference sterns from their starting points: conjugate subgroups and conjugacy classes. The conventional textbooks deal with linear representations and character ta­ bles of point groups. This fact implies that they lay stress on conjugacy classesj in fact, such group characters are determined for the respective conjugacy classes. This approach is versatile, since conjugacy classes can be easily obtained by ex­ amining every element of a group. It is unnecessary to know the group-subgroup relationship of the group, which is not always easy to obtain. The same situa­ tion is true for chemical enumerations, though these are founded on permutation groups. Thus, the P6lya-Redfield theorem (1935 and 1927) uses a cycle index that is composed of terms associated with conjugacy classes.

Keywords

Cycle index Gruppentheorie Lattice Permutation Polya Stereochemie Topicity chemistry chirality classification fields molecule skeleton stereochemistry synthesis

Authors and affiliations

  • Shinsaku Fujita
    • 1
  1. 1.Research Laboratories, AshigaraFuji Photo Film Co., Ltd.Minami-Ashigara, KanagawakenJapan

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-76696-1
  • Copyright Information Springer-Verlag Berlin Heidelberg 1991
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-54126-4
  • Online ISBN 978-3-642-76696-1
  • Buy this book on publisher's site