Tables of Laplace Transforms

  • Fritz Oberhettinger
  • Larry Badii

Table of contents

  1. Front Matter
    Pages n1-VII
  2. Fritz Oberhettinger, Larry Badii
    Pages 1-206
  3. Fritz Oberhettinger, Larry Badii
    Pages 207-409
  4. Back Matter
    Pages 411-430

About this book

Introduction

This material represents a collection of integrals of the Laplace- and inverse Laplace Transform type. The usef- ness of this kind of information as a tool in various branches of Mathematics is firmly established. Previous publications include the contributions by A. Erdelyi and Roberts and Kaufmann (see References). Special consideration is given to results involving higher functions as integrand and it is believed that a substantial amount of them is presented here for the first time. Greek letters denote complex parameters within the given range of validity. Latin letters denote (unless otherwise stated) real positive parameters and a possible extension to complex values by analytic continuation will often pose no serious problem. The authors are indebted to Mrs. Jolan Eross for her tireless effort and patience while typing this manu­ script. Oregon State University Corvallis, Oregon Eastern Michigan University Ypsilanti, Michigan The Authors Contents Part I. Laplace Transforms In troduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 General Formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2 Algebraic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 3 Powers of Arbitrary Order. . . . . . . . . . . . . . . . . . . . . . . . 21 1. 4 Sectionally Rational- and Rows of Delta Functions 28 1. 5 Exponential Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1. 6 Logarithmic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1. 7 Trigonometric Functions. . . . . . . . . . . . . . . . . . . . . . . . . . 54 1. 8 Inverse Trigonometric Functions. . . . . . . . . . . . . . . . . . 81 1. 9 Hyperbolic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 1. 10 Inverse Hyperbolic Functions. . . . . . . . . . . . . . . . . . . . . 99 1. 11 Orthogonal Polynomials . . . . . . . •. . . . . . . . . . . . . . . . . . . 103 1. 12 Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 1. 13 Bessel Functions of Order Zero and Unity . . . . . . . . . 119 1. 14 Bessel Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 1. 15 Modified Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . .

Keywords

Hypergeometric function Laplace-Transformation algebra function logarithm orthogonal polynomials

Authors and affiliations

  • Fritz Oberhettinger
    • 1
  • Larry Badii
    • 2
  1. 1.Oregon State UniversityCorvallisUSA
  2. 2.Eastern Michigan UniversityYpsilantiUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-65645-3
  • Copyright Information Springer-Verlag Berlin Heidelberg 1973
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-06350-6
  • Online ISBN 978-3-642-65645-3
  • About this book