Advertisement

Algebraic Topology — Homotopy and Homology

  • Robert M. Switzer

Part of the Classics in Mathematics book series (volume 212)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Robert M. Switzer
    Pages 1-5
  3. Robert M. Switzer
    Pages 11-35
  4. Robert M. Switzer
    Pages 36-51
  5. Robert M. Switzer
    Pages 52-63
  6. Robert M. Switzer
    Pages 64-73
  7. Robert M. Switzer
    Pages 74-98
  8. Robert M. Switzer
    Pages 99-132
  9. Robert M. Switzer
    Pages 133-151
  10. Robert M. Switzer
    Pages 152-166
  11. Robert M. Switzer
    Pages 167-189
  12. Robert M. Switzer
    Pages 190-217
  13. Robert M. Switzer
    Pages 218-232
  14. Robert M. Switzer
    Pages 233-305
  15. Robert M. Switzer
    Pages 306-335
  16. Robert M. Switzer
    Pages 336-374
  17. Robert M. Switzer
    Pages 375-410
  18. Robert M. Switzer
    Pages 411-439
  19. Robert M. Switzer
    Pages 440-457
  20. Robert M. Switzer
    Pages 458-489
  21. Robert M. Switzer
    Pages 490-517
  22. Back Matter
    Pages 518-526

About this book

Introduction

From the reviews:
"The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature...
(S.Y. Husseini in Mathematical Reviews, 1976)

Keywords

Algebraic topology YellowSale2006 cohomology theories fibre bundles homolgy theories homotopy groups monotopy theory operations spectral sequences

Authors and affiliations

  • Robert M. Switzer
    • 1
  1. 1.Mathematisches InstitutGeorg-August-UniversitätGöttingenGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-61923-6
  • Copyright Information Springer-Verlag Berlin Heidelberg 2002
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-42750-6
  • Online ISBN 978-3-642-61923-6
  • Series Print ISSN 0072-7830
  • Buy this book on publisher's site