Several Complex Variables III

Geometric Function Theory

  • G. M. Khenkin

Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 9)

Table of contents

  1. Front Matter
    Pages i-vii
  2. L. I. Ronkin
    Pages 1-30
  3. I. M. Dektyarev
    Pages 31-61
  4. E. A. Poletskiľ, B. V. Shabat
    Pages 63-111
  5. M. G. Zaľdenberg, V. Ya. Lin
    Pages 113-172
  6. A. E. Tumanov
    Pages 201-221
  7. A. A. Roslyľ, O. M. Khudaverdyan, A. S. Schwarz
    Pages 223-254
  8. Back Matter
    Pages 255-264

About this book

Introduction

We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space

Keywords

Dimension complex geometry distribution geometry gravity manifold

Editors and affiliations

  • G. M. Khenkin
    • 1
  1. 1.Central Economic and Mathematical InstituteAcademy of Sciences of the USSRMoscowUSSR

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-61308-1
  • Copyright Information Springer-Verlag Berlin Heidelberg 1989
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-64785-7
  • Online ISBN 978-3-642-61308-1
  • Series Print ISSN 0938-0396
  • About this book