Advertisement

Commutative Harmonic Analysis III

Generalized Functions. Application

  • V. P. Havin
  • N. K. Nikol’skij

Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 72)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Distributions and Harmonic Analysis

    1. Front Matter
      Pages 1-2
    2. V. P. Havin, N. K. Nikol’skij
      Pages 3-4
    3. V. P. Havin, N. K. Nikol’skij
      Pages 5-14
    4. V. P. Havin, N. K. Nikol’skij
      Pages 15-38
    5. V. P. Havin, N. K. Nikol’skij
      Pages 38-59
    6. V. P. Havin, N. K. Nikol’skij
      Pages 60-83
    7. V. P. Havin, N. K. Nikol’skij
      Pages 83-120
  3. Optical and Acoustic Fourier Processors

    1. Front Matter
      Pages 129-130
    2. V. P. Havin, N. K. Nikol’skij
      Pages 131-135
    3. V. P. Havin, N. K. Nikol’skij
      Pages 136-147
    4. V. P. Havin, N. K. Nikol’skij
      Pages 147-159
    5. V. P. Havin, N. K. Nikol’skij
      Pages 160-173
  4. The Uncertainty Principle in Harmonic Analysis

    1. Front Matter
      Pages 177-179
    2. V. P. Havin, N. K. Nikol’skij
      Pages 180-180
    3. V. P. Havin, N. K. Nikol’skij
      Pages 181-207
    4. V. P. Havin, N. K. Nikol’skij
      Pages 207-252
  5. Back Matter
    Pages 261-268

About this book

Introduction

This EMS volume shows the great power provided by modern harmonic analysis, not only in mathematics, but also in mathematical physics and engineering. Aimed at a reader who has learned the principles of harmonic analysis, this book is intended to provide a variety of perspectives on this important classical subject. The authors have written an outstanding book which distinguishes itself by the authors' excellent expository style.
It can be useful for the expert in one area of harmonic analysis who wishes to obtain broader knowledge of other aspects of the subject and also by graduate students in other areas of mathematics who wish a general but rigorous introduction to the subject.

Keywords

Fourier processors Fourierprozessoren Funktionen Generalized functions Harmonic Analysis Unschärferprinzip Verallgemeinerte Funktionen calculus differential equation distribution harmonische Analyse mathematical physics mathematics uncertainty principle

Editors and affiliations

  • V. P. Havin
    • 1
    • 2
  • N. K. Nikol’skij
    • 3
    • 4
  1. 1.Department of MathematicsSt. Petersburg State UniversitySt. Petersburg, Staryj PeterhofRussia
  2. 2.Department of Mathematics and StatisticsMc Gill UniversityMontrealCanada
  3. 3.Steklov Mathematical InstituteSt. PetersburgRussia
  4. 4.Département de MathématiquesUniversité de Bordeaux ITalence, CedexFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-57854-0
  • Copyright Information Springer-Verlag Berlin Heidelberg 1995
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-642-63380-5
  • Online ISBN 978-3-642-57854-0
  • Series Print ISSN 0938-0396
  • Buy this book on publisher's site