Skip to main content

Resource-Constrained Project Scheduling

Exact Methods for the Multi-Mode Case

  • Book
  • © 1994

Overview

Part of the book series: Lecture Notes in Economics and Mathematical Systems (LNE, volume 409)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

Within a project human and non-human resources are pulled together in a tempo­ raray organization in order to achieve a predefined goal (d. [20], p. 187). That is, in contrast to manufacturing management, project management is directed to an end. One major function of project management is the scheduling of the project. Project scheduling is the time-based arrangement of the activities comprising the project subject to precedence-, time-and resource-constraints (d. [4], p. 170). In the 1950's the standard methods MPM (Metra Potential Method) and CPM (Cri­ tical Path Method) were developed. Given deterministic durations and precedence­ constraints the minimum project length, time windows for the start times and critical paths can be calculated. At the same time another group of researchers developed the Program Evaluation and Review Technique (PERT) (d. [19], [73] and [90]). In contrast to MPM and CPM, random variables describe the activity durations. Based on the optimistic, most likely and pessimistic estimations of the activity durations an assumed Beta­ distribution is derived in order to calculate the distribution of the project duration, the critical events, the distribution of earliest and latest occurence of an event, the distribution of the slack of the events and the probability of exceeding a date. By the time the estimates of the distributions have been improved (d. e.g. [52] and [56]). Nevertheless, there are some points of critique concerning the estimation of the resulting distributions and probabilities (d. e.g. [48], [49] and [50]).

Authors and Affiliations

  • Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

    Arno Sprecher

Bibliographic Information

Publish with us