Advertisement

Real Algebraic Geometry

  • Vladimir I. Arnold
  • Ilia Itenberg
  • Viatcheslav Kharlamov
  • Eugenii I. Shustin

Part of the UNITEXT book series (UNITEXT, volume 66)

Also part of the La Matematica per il 3+2 book sub series (UNITEXTMAT, volume 66)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Vladimir I. Arnold
    Pages 1-2
  3. Vladimir I. Arnold
    Pages 3-18
  4. Vladimir I. Arnold
    Pages 19-31
  5. Vladimir I. Arnold
    Pages 33-53
  6. Vladimir I. Arnold
    Pages 55-75
  7. Vladimir I. Arnold
    Pages 77-83
  8. Back Matter
    Pages 85-107

About this book

Introduction

This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images.

At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century).

In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).

Keywords

algebraic curves conic sections projective geometry

Authors and affiliations

  • Vladimir I. Arnold
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Editors and affiliations

  • Ilia Itenberg
    • 1
  • Viatcheslav Kharlamov
    • 2
  • Eugenii I. Shustin
    • 3
  1. 1.Dept. of MathematicsUniversité Pierre et Marie CurieParisFrance
  2. 2.CNRS - IRMAUniversity of StrasbourgStrasbourgFrance
  3. 3.Fac. Exact Sciences, School of Mathematical SciencesUniversity of Tel AvivTel AvivIsrael

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-36243-9
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-36242-2
  • Online ISBN 978-3-642-36243-9
  • Series Print ISSN 2038-5714
  • Buy this book on publisher's site