Domain Decomposition Methods in Science and Engineering XX

  • Randolph Bank
  • Michael Holst
  • Olof Widlund
  • Jinchao Xu

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)

Table of contents

  1. Front Matter
    Pages I-XIX
  2. Plenary Presentations

    1. Front Matter
      Pages 1-1
    2. Constantin Bacuta, Long Chen, Jinchao Xu
      Pages 3-14
    3. Clark R. Dohrmann, Olof B. Widlund
      Pages 15-25
    4. T. Cluzeau, V. Dolean, F. Nataf, A. Quadrat
      Pages 27-38
    5. Z. Dostál, T. Kozubek, T. Brzobohatý, A. Markopoulos, M. Sadowská, V. Vondrák
      Pages 39-49
    6. Robert Scheichl
      Pages 51-62
  3. Minisymposia

    1. Front Matter
      Pages 85-85
    2. V. Dolean, F. Nataf, R. Scheichl, N. Spillane
      Pages 87-94
    3. Randolph E. Bank, Hieu Nguyen
      Pages 103-110
    4. Etereldes Gonçalves, Marcus Sarkis
      Pages 111-118
    5. Cheng Wang, Mingyan He, Ziping Huang, Pengtao Sun
      Pages 119-126
    6. Susanne C. Brenner, Shiyuan Gu, Li-yeng Sung
      Pages 127-134
    7. James Brannick, Yao Chen, Johannes Kraus, Ludmil Zikatanov
      Pages 143-150
    8. Jung-Han Kimn, Marcus Sarkis
      Pages 151-158
    9. E. Karer, J. K. Kraus, L. T. Zikatanov
      Pages 159-166

About these proceedings


These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.​


Domain Decomposition Finite Elements Parallel Computation Preconditioned Conjugate Gradients

Editors and affiliations

  • Randolph Bank
    • 1
  • Michael Holst
    • 2
  • Olof Widlund
    • 3
  • Jinchao Xu
    • 4
  1. 1., Department of MathematicsUniversity of California, San DiegoLa JollaUSA
  2. 2., Department of MathematicsUniversity of California, San DiegoLa JollaUSA
  3. 3., Courant Institute of MathematicalNew York UniversityNew YorkUSA
  4. 4., Department of MathematicsPennsylvania State UniversityState CollegeUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 2013
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-35274-4
  • Online ISBN 978-3-642-35275-1
  • Series Print ISSN 1439-7358
  • About this book