The Gaussian Approximation Potential

An Interatomic Potential Derived from First Principles Quantum Mechanics

  • Albert Bartόk-Pártay

Part of the Springer Theses book series (Springer Theses)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Albert Bartók-Pártay
    Pages 1-3
  3. Albert Bartók-Pártay
    Pages 5-22
  4. Albert Bartók-Pártay
    Pages 23-31
  5. Albert Bartók-Pártay
    Pages 33-49
  6. Albert Bartók-Pártay
    Pages 51-56
  7. Albert Bartók-Pártay
    Pages 57-81
  8. Albert Bartók-Pártay
    Pages 83-84
  9. Albert Bartók-Pártay
    Pages 85-88

About this book

Introduction

Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.

Keywords

Bispectrum of rotational groups Gaussian process Interatomic potentials based on quantum mechanics Machine learning Potential Quantum mechanics Represent Representation of atomic environments Semiconductor mechanics metal simulation

Authors and affiliations

  • Albert Bartόk-Pártay
    • 1
  1. 1., TCM Group, Cavendish LaboratoryUniversity of CambridgeCambridgeUnited Kingdom

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-14067-9
  • Copyright Information Springer-Verlag GmbH Berlin Heidelberg 2010
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-642-14066-2
  • Online ISBN 978-3-642-14067-9
  • Series Print ISSN 2190-5053
  • Series Online ISSN 2190-5061
  • About this book