Geometric Measure Theory and Minimal Surfaces

  • Editors
  • E. Bombieri

Part of the C.I.M.E. Summer Schools book series (CIME, volume 61)

Table of contents

About this book

Introduction

W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-10970-6
  • Copyright Information Springer-Verlag Berlin Heidelberg 2011
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-642-10969-0
  • Online ISBN 978-3-642-10970-6
  • About this book