Advertisement

Tensor Geometry

The Geometric Viewpoint and its Uses

  • Christopher Terence John Dodson
  • Timothy Poston

Part of the Graduate Texts in Mathematics book series (GTM, volume 130)

Table of contents

  1. Front Matter
    Pages I-XIV
  2. Christopher Terence John Dodson, Timothy Poston
    Pages 1-17
  3. Christopher Terence John Dodson, Timothy Poston
    Pages 18-42
  4. Christopher Terence John Dodson, Timothy Poston
    Pages 43-56
  5. Christopher Terence John Dodson, Timothy Poston
    Pages 57-63
  6. Christopher Terence John Dodson, Timothy Poston
    Pages 64-97
  7. Christopher Terence John Dodson, Timothy Poston
    Pages 98-113
  8. Christopher Terence John Dodson, Timothy Poston
    Pages 114-148
  9. Christopher Terence John Dodson, Timothy Poston
    Pages 149-204
  10. Christopher Terence John Dodson, Timothy Poston
    Pages 205-245
  11. Christopher Terence John Dodson, Timothy Poston
    Pages 246-297
  12. Christopher Terence John Dodson, Timothy Poston
    Pages 298-339
  13. Christopher Terence John Dodson, Timothy Poston
    Pages 340-371
  14. Christopher Terence John Dodson, Timothy Poston
    Pages 372-417
  15. Back Matter
    Pages 418-434

About this book

Introduction

We have been very encouraged by the reactions of students and teachers using our book over the past ten years and so this is a complete retype in TEX, with corrections of known errors and the addition of a supplementary bibliography. Thanks are due to the Springer staff in Heidelberg for their enthusiastic sup­ port and to the typist, Armin Kollner for the excellence of the final result. Once again, it has been achieved with the authors in yet two other countries. November 1990 Kit Dodson Toronto, Canada Tim Poston Pohang, Korea Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI O. Fundamental Not(at)ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. Physical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I. Real Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1. Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Subspace geometry, components 2. Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Linearity, singularity, matrices 3. Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Projections, eigenvalues, determinant, trace II. Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1. Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Tangent vectors, parallelism, coordinates 2. Combinations of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Midpoints, convexity 3. Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Linear parts, translations, components III. Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1. Contours, Co- and Contravariance, Dual Basis . . . . . . . . . . . . . . 57 IV. Metric Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Basic geometry and examples, Lorentz geometry 2. Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Isometries, orthogonal projections and complements, adjoints 3. Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Orthonormal bases Contents VIII 4. Diagonalising Symmetric Operators 92 Principal directions, isotropy V. Tensors and Multilinear Forms 98 1. Multilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Tensor Products, Degree, Contraction, Raising Indices VE Topological Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 1. Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Metrics, topologies, homeomorphisms 2. Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Convergence and continuity 3. The Usual Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Keywords

Differential Geometry Differrentielle Geometrie Krümmung RMS Relativity Relativität Special relativity Tensor Tensors curvature general relativity manifold

Authors and affiliations

  • Christopher Terence John Dodson
    • 1
  • Timothy Poston
    • 2
  1. 1.Department of Mathematics, Institute of Science and TechnologyUniversity of ManchesterManchesterUK
  2. 2.SingaporeSingapore

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-642-10514-2
  • Copyright Information Springer-Verlag Berlin Heidelberg 1991
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-662-13117-6
  • Online ISBN 978-3-642-10514-2
  • Series Print ISSN 0072-5285
  • Buy this book on publisher's site