Eichfeldtheorie

Eine Einführung in die Differentialgeometrie auf Faserbündeln

  • Helga Baum

Table of contents

  1. Front Matter
    Pages 1-11
  2. Helga Baum
    Pages 1-41
  3. Helga Baum
    Pages 1-46
  4. Helga Baum
    Pages 1-14
  5. Back Matter
    Pages 1-86

About this book

Introduction

Dieses Lehrbuch bietet eine Einführung in die Differentialgeometrie auf Faserbündeln. Nach einem Kapitel über Lie-Gruppen und homogene Räume werden lokal-triviale Faserungen, insbesondere die Hauptfaserbündel und zu ihnen assoziierte Vektorbündel, besprochen. Es folgen die grundlegenden Begriffe der Differentialrechnung auf Faserbündeln: Zusammenhang, Krümmung, Parallelverschiebung und kovariante Ableitung. Anschließend werden die Holonomiegruppen vorgestellt, die zentrale Bedeutung in der Differentialgeometrie haben. Als Anwendungen werden charakteristische Klassen und die Yang-Mills-Gleichung behandelt. Zahlreiche Aufgaben mit Lösungshinweisen helfen, das Gelernte zu vertiefen.

Das Buch richtet sich vor allem an Studenten der Mathematik und Physik im Hauptstudium und stellt mathematische Grundlagen bereit, die in Vorlesungen zur Eichfeldtheorie in der theoretischen und mathematischen Physik Anwendung finden.

Keywords

Differentialgeometrie Faserbündel Holonomie Krümmung-Gruppen Mannigfaltigkeit Zusammenhänge

Authors and affiliations

  • Helga Baum

There are no affiliations available

Bibliographic information