Skip to main content

Holomorphic Curves in Low Dimensions

From Symplectic Ruled Surfaces to Planar Contact Manifolds

  • Book
  • © 2018

Overview

  • Provides an up-to-date perspective on certain foundational results in 4-dimensional symplectic topology
  • Includes the first exposition aimed at graduate students on the classification of uniruled symplectic 4-manifolds
  • Illustrates the connection between McDuff's classic results on rational/ruled surfaces and more recent developments involving symplectic fillings of contact 3-manifolds and the Weinstein conjecture
  • Offers a concise survey of the essential analytical results in the theory of punctured holomorphic curves

Part of the book series: Lecture Notes in Mathematics (LNM, volume 2216)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three.

The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds.

This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details.

 

This book is also part of the Virtual Series on Symplectic Geometry

http://www.springer.com/series/16019

Similar content being viewed by others

Keywords

Table of contents (9 chapters)

Reviews

“The book is well-written, well-referenced … . Anyone interested in McDuff’s characterization of rational and ruled symplectic 4-manifolds or her theorem that says ‘uniruled => rational/ruled’ should find this book quite useful.” (David E. Hurtubise, zbMATH 1432.57055, 2020)


Authors and Affiliations

  • Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany

    Chris Wendl

About the author

Chris Wendl is known among symplectic topologists for contributions to the study of symplectic fillability of contact manifolds, and for transversality results in the theory of pseudoholomorphic curves. He is currently Professor of Differential Geometry and Global Analysis at the Humboldt University in Berlin, and is also the author of two other forthcoming books on holomorphic curves and symplectic field theory.

Bibliographic Information

Publish with us