Skip to main content
  • Textbook
  • © 2018

Introduction to Deep Learning

From Logical Calculus to Artificial Intelligence

  • Offers a welcome clarity of expression, maintaining mathematical rigor yet presenting the ideas in an intuitive and colourful manner

  • Includes references to open problems studied in other disciplines, enabling the reader to pursue these topics on their own, armed with the tools learned from the book

  • Presents an accessible style and interdisciplinary approach, with a vivid and lively exposition supported by numerous examples, connected ideas, and historical remarks

Part of the book series: Undergraduate Topics in Computer Science (UTICS)

Buying options

eBook USD 44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-73004-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 59.99
Price excludes VAT (USA)

This is a preview of subscription content, access via your institution.

Table of contents (11 chapters)

  1. Front Matter

    Pages i-xiii
  2. From Logic to Cognitive Science

    • Sandro Skansi
    Pages 1-16
  3. Machine Learning Basics

    • Sandro Skansi
    Pages 51-77
  4. Feedforward Neural Networks

    • Sandro Skansi
    Pages 79-105
  5. Convolutional Neural Networks

    • Sandro Skansi
    Pages 121-133
  6. Recurrent Neural Networks

    • Sandro Skansi
    Pages 135-152
  7. Autoencoders

    • Sandro Skansi
    Pages 153-163
  8. Neural Language Models

    • Sandro Skansi
    Pages 165-173
  9. Conclusion

    • Sandro Skansi
    Pages 185-187
  10. Back Matter

    Pages 189-191

About this book

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.

Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.

This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Keywords

  • Deep learning
  • Neural networks
  • Pattern recognition
  • Natural language processing
  • Autoencoders

Authors and Affiliations

  • University of Zagreb, Zagreb, Croatia

    Sandro Skansi

About the author

Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.

Bibliographic Information

Buying options

eBook USD 44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-73004-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 59.99
Price excludes VAT (USA)