© 2017

Patterns of Dynamics

Berlin, July 2016

  • Pavel Gurevich
  • Juliette Hell
  • Björn Sandstede
  • Arnd Scheel
Conference proceedings PaDy 2016

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 205)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Patterns and Waves

    1. Front Matter
      Pages 1-1
    2. Michael Herrmann, Karsten Matthies
      Pages 3-15
    3. Jürgen Scheurle
      Pages 16-27
    4. Anna Zakharova, Nadezhda Semenova, Vadim Anishchenko, Eckehard Schöll
      Pages 44-63
  3. Statistical Properties of Dynamics

    1. Front Matter
      Pages 65-65
    2. Fredrik Ekström, Jörg Schmeling
      Pages 67-87
    3. Arnd Scheel, Sergey Tikhomirov
      Pages 88-108
  4. Nonlinear Partial Differential Equations

    1. Front Matter
      Pages 109-109
    2. Valentin Fëdorovich Butuzov, Nikolai N. Nefedov, Oleh E. Omel’chenko, Lutz Recke, Klaus R. Schneider
      Pages 111-127
    3. Marek Fila, Hiroshi Matano, Eiji Yanagida
      Pages 138-148
    4. Lutz Recke, Martin Väth, Milan Kučera, Josef Navrátil
      Pages 184-202
    5. Matthias Wolfrum
      Pages 203-212
  5. Control and Numerics

    1. Front Matter
      Pages 213-213
    2. Wolf-Jürgen Beyn, Denny Otten, Jens Rottmann-Matthes
      Pages 215-241
    3. Klaus Böhmer
      Pages 242-268

About these proceedings


Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes. 


37Lxx, 35K59, 34Kxx, 80A30, 37N25 infinite-dimensional dissipative dynamical systems quasilinear parabolic equations Functional-differential and differential-difference equations chemical kinetics dynamical systems in biology patterns of dynamics Bernold Fiedler

Editors and affiliations

  • Pavel Gurevich
    • 1
  • Juliette Hell
    • 2
  • Björn Sandstede
    • 3
  • Arnd Scheel
    • 4
  1. 1.Mathematical InstituteFree University of BerlinBerlinGermany
  2. 2.Mathematical InstituteFree University of BerlinBerlinGermany
  3. 3.Division of Applied MathematicsBrown UniversityProvidenceUSA
  4. 4.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Bibliographic information