Advertisement

Undergraduate Mathematics Competitions (1995–2016)

Taras Shevchenko National University of Kyiv

  • Volodymyr Brayman
  • Alexander Kukush

Part of the Problem Books in Mathematics book series (PBM)

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Problems

    1. Front Matter
      Pages 1-2
    2. Volodymyr Brayman, Alexander Kukush
      Pages 3-5
    3. Volodymyr Brayman, Alexander Kukush
      Pages 7-8
    4. Volodymyr Brayman, Alexander Kukush
      Pages 9-10
    5. Volodymyr Brayman, Alexander Kukush
      Pages 11-12
    6. Volodymyr Brayman, Alexander Kukush
      Pages 13-13
    7. Volodymyr Brayman, Alexander Kukush
      Pages 15-17
    8. Volodymyr Brayman, Alexander Kukush
      Pages 19-20
    9. Volodymyr Brayman, Alexander Kukush
      Pages 21-23
    10. Volodymyr Brayman, Alexander Kukush
      Pages 25-26
    11. Volodymyr Brayman, Alexander Kukush
      Pages 27-29
    12. Volodymyr Brayman, Alexander Kukush
      Pages 31-33
    13. Volodymyr Brayman, Alexander Kukush
      Pages 35-37
    14. Volodymyr Brayman, Alexander Kukush
      Pages 39-41
    15. Volodymyr Brayman, Alexander Kukush
      Pages 43-45
    16. Volodymyr Brayman, Alexander Kukush
      Pages 47-49
    17. Volodymyr Brayman, Alexander Kukush
      Pages 51-53
    18. Volodymyr Brayman, Alexander Kukush
      Pages 55-57
    19. Volodymyr Brayman, Alexander Kukush
      Pages 59-61
    20. Volodymyr Brayman, Alexander Kukush
      Pages 63-64
    21. Volodymyr Brayman, Alexander Kukush
      Pages 65-66
    22. Volodymyr Brayman, Alexander Kukush
      Pages 67-68
    23. Volodymyr Brayman, Alexander Kukush
      Pages 69-71
  3. Solutions

    1. Front Matter
      Pages 73-74
    2. Volodymyr Brayman, Alexander Kukush
      Pages 75-81
    3. Volodymyr Brayman, Alexander Kukush
      Pages 83-87
    4. Volodymyr Brayman, Alexander Kukush
      Pages 89-93
    5. Volodymyr Brayman, Alexander Kukush
      Pages 95-101
    6. Volodymyr Brayman, Alexander Kukush
      Pages 103-105
    7. Volodymyr Brayman, Alexander Kukush
      Pages 107-112
    8. Volodymyr Brayman, Alexander Kukush
      Pages 113-117
    9. Volodymyr Brayman, Alexander Kukush
      Pages 119-124
    10. Volodymyr Brayman, Alexander Kukush
      Pages 125-131
    11. Volodymyr Brayman, Alexander Kukush
      Pages 133-138
    12. Volodymyr Brayman, Alexander Kukush
      Pages 139-144
    13. Volodymyr Brayman, Alexander Kukush
      Pages 145-151
    14. Volodymyr Brayman, Alexander Kukush
      Pages 153-159
    15. Volodymyr Brayman, Alexander Kukush
      Pages 161-168
    16. Volodymyr Brayman, Alexander Kukush
      Pages 169-174
    17. Volodymyr Brayman, Alexander Kukush
      Pages 175-182
    18. Volodymyr Brayman, Alexander Kukush
      Pages 183-188
    19. Volodymyr Brayman, Alexander Kukush
      Pages 189-198
    20. Volodymyr Brayman, Alexander Kukush
      Pages 199-204
    21. Volodymyr Brayman, Alexander Kukush
      Pages 205-209
    22. Volodymyr Brayman, Alexander Kukush
      Pages 211-216
    23. Volodymyr Brayman, Alexander Kukush
      Pages 217-223
  4. Back Matter
    Pages 225-228

About this book

Introduction

Versatile and comprehensive in content, this book of problems will appeal to students in nearly all areas of mathematics. The text offers original and advanced problems proposed from 1995 to 2016 at the Mathematics Olympiads. Essential for undergraduate students, PhD students, and instructors, the problems in this book vary in difficulty and cover most of the obligatory courses given at the undergraduate level, including calculus, algebra, geometry, discrete mathematics, measure theory, complex analysis, differential equations, and probability theory. Detailed solutions to all of the problems from Part I are supplied in Part II, giving students the ability to check their solutions and observe new and unexpected ideas. Most of the problems in this book are not technical and allow for a short and elegant solution. The problems given are unique and non-standard; solving the problems requires a creative approach as well as a deep understanding of the material. Nearly all of the problems are originally authored by lecturers, PhD students, senior undergraduates, and graduate students of the mechanics and mathematics faculty of Taras Shevchenko National University of Kyiv as well as by many others from Belgium, Canada, Great Britain, Hungary, and the United States.

Keywords

Problems Calculus Algebra Geometry Complex Analysis

Authors and affiliations

  • Volodymyr Brayman
    • 1
  • Alexander Kukush
    • 2
  1. 1.Dept of Mathematical AnalysisTaras Shevchenko National University of Dept of Mathematical AnalysisKyivUkraine
  2. 2.Dept. of Mathematical AnalysisTaras Shevchenko National University KyivUkraine

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-58673-1
  • Copyright Information Springer International Publishing AG 2017
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-58672-4
  • Online ISBN 978-3-319-58673-1
  • Series Print ISSN 0941-3502
  • Series Online ISSN 2197-8506
  • Buy this book on publisher's site