Skip to main content
  • Conference proceedings
  • © 2017

Evolutionary Multi-Criterion Optimization

9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings

Part of the book series: Lecture Notes in Computer Science (LNCS, volume 10173)

Part of the book sub series: Theoretical Computer Science and General Issues (LNTCS)

Conference series link(s): EMO: International Conference on Evolutionary Multi-Criterion Optimization

Conference proceedings info: EMO 2017.

Buying options

eBook USD 89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-54157-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 119.99
Price excludes VAT (USA)

This is a preview of subscription content, access via your institution.

Table of contents (46 papers)

  1. Front Matter

    Pages I-XIV
  2. On the Effect of Scalarising Norm Choice in a ParEGO implementation

    • Naveed Reza Aghamohammadi, Shaul Salomon, Yiming Yan, Robin C. Purshouse
    Pages 1-15
  3. Multi-objective Big Data Optimization with jMetal and Spark

    • Cristóbal Barba-Gonzaléz, José García-Nieto, Antonio J. Nebro, José F. Aldana-Montes
    Pages 16-30
  4. An Empirical Assessment of the Properties of Inverted Generational Distance on Multi- and Many-Objective Optimization

    • Leonardo C. T. Bezerra, Manuel López-Ibáñez, Thomas Stützle
    Pages 31-45
  5. Automatically Configuring Multi-objective Local Search Using Multi-objective Optimisation

    • Aymeric Blot, Alexis Pernet, Laetitia Jourdan, Marie-Éléonore Kessaci-Marmion, Holger H. Hoos
    Pages 61-76
  6. Angle-Based Preference Models in Multi-objective Optimization

    • Marlon Braun, Pradyumn Shukla, Hartmut Schmeck
    Pages 88-102
  7. Quantitative Performance Assessment of Multiobjective Optimizers: The Average Runtime Attainment Function

    • Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Tea Tušar
    Pages 103-119
  8. A Multiobjective Strategy to Allocate Roadside Units in a Vehicular Network with Guaranteed Levels of Service

    • Flávio Vinícius Cruzeiro Martins, João F. M. Sarubbi, Elizabeth F. Wanner
    Pages 120-134
  9. An Approach for the Local Exploration of Discrete Many Objective Optimization Problems

    • Oliver Cuate, Bilel Derbel, Arnaud Liefooghe, El-Ghazali Talbi, Oliver Schütze
    Pages 135-150
  10. A Note on the Detection of Outliers in a Binary Outranking Relation

    • Yves De Smet, Jean-Philippe Hubinont, Jean Rosenfeld
    Pages 151-159
  11. Classifying Metamodeling Methods for Evolutionary Multi-objective Optimization: First Results

    • Kalyanmoy Deb, Rayan Hussein, Proteek Roy, Gregorio Toscano
    Pages 160-175
  12. A New Reduced-Length Genetic Representation for Evolutionary Multiobjective Clustering

    • Mario Garza-Fabre, Julia Handl, Joshua Knowles
    Pages 236-251
  13. Adaptive Operator Selection for Many-Objective Optimization with NSGA-III

    • Richard A. Gonçalves, Lucas M. Pavelski, Carolina P. de Almeida, Josiel N. Kuk, Sandra M. Venske, Myriam R. Delgado
    Pages 267-281

Other Volumes

  1. Evolutionary Multi-Criterion Optimization

    9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings

About this book

This book constitutes the refereed proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2017 held in Münster, Germany in March 2017. 

The 33 revised full papers presented together with 13 poster presentations were carefully reviewed and selected from 72 submissions. The EMO 2017 aims to discuss all aspects of EMO development and deployment, including theoretical foundations; constraint handling techniques; preference handling techniques; handling of continuous, combinatorial or mixed-integer problems; local search techniques; hybrid approaches; stopping criteria; parallel EMO models; performance evaluation; test functions and benchmark problems; algorithm selection approaches; many-objective optimization; large scale optimization; real-world applications; EMO algorithm implementations.

Keywords

  • big data
  • evolutionary algorithms
  • machine learning
  • numeric computing
  • parallel computing
  • algorithm analysis and problem complexity
  • artificial intelligence
  • cluster analysis
  • combinatoric problems
  • computer applications
  • evolutionary computation
  • expert knowledge integration
  • hybrid optimization
  • model-based optimization
  • multi-criteria decision making
  • multi-objective optimization
  • performance evaluation
  • quality of service
  • randomized search heuristics
  • visualization

Editors and Affiliations

  • University of Münster, Münster, Germany

    Heike Trautmann, Christian Grimme

  • TU Dortmund University, Dortmund, Germany

    Günter Rudolph

  • University of Wuppertal, Wuppertal, Germany

    Kathrin Klamroth

  • CINVESTAV-IPN, Mexico City, Mexico

    Oliver Schütze

  • Clemson University, Clemson, USA

    Margaret Wiecek

  • University of Surrey, Guildford, United Kingdom

    Yaochu Jin

Bibliographic Information

Buying options

eBook USD 89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-54157-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 119.99
Price excludes VAT (USA)