Numerical Simulation in Applied Geophysics

  • Juan Enrique Santos
  • Patricia Mercedes Gauzellino

Table of contents

  1. Front Matter
    Pages i-xv
  2. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 1-31
  3. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 33-53
  4. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 55-77
  5. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 79-95
  6. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 97-119
  7. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 121-153
  8. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 155-187
  9. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 189-211
  10. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 213-231
  11. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 233-268
  12. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 269-281
  13. Juan Enrique Santos, Patricia Mercedes Gauzellino
    Pages 283-299
  14. Back Matter
    Pages 301-309

About this book

Introduction

This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications.

The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM).

Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies.

In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic and anisotropic medium at the macroscale.

The book presents a procedure determine the coefficients of the effective medium employing a collection of time-harmonic compressibility and shear experiments, in the context of Numerical Rock Physics. Each experiment is associated with a boundary value problem, that is solved using the FEM.

This approach offers an alternative to laboratory observations with the advantages that they are inexpensive, repeatable and essentially free from experimental errors.

The different topics are followed by illustrative examples of application in Geophysical Exploration. In particular, the effects caused by mesoscopic-scale heterogeneities or the presence of aligned fractures are taking into account in the seismic wave propagation models at the macroscale.

The numerical simulations of wave propagation are presented with sufficient detail as to be easily implemented assuming the knowledge of scientific programming techniques.

Keywords

Poroelasticity anisotropy viscoelasticity seismic waves finite elements method mesoscale macroscale numerical upscaling effective media

Authors and affiliations

  • Juan Enrique Santos
    • 1
  • Patricia Mercedes Gauzellino
    • 2
  1. 1.Facultad de Ingeniería, Instituto del Gas y del PetróleoUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.Departamento de Geofísica Aplicada, Facultad de Ciencias Astronómicas y GeofísicasUNLP Universidad Nacional de La PlataLa PlataArgentina

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-48457-0
  • Copyright Information Springer International Publishing AG 2016
  • Publisher Name Birkhäuser, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-48456-3
  • Online ISBN 978-3-319-48457-0
  • About this book