Rationality Problems in Algebraic Geometry

Levico Terme, Italy 2015

  • Arnaud Beauville
  • Brendan Hassett
  • Alexander Kuznetsov
  • Alessandro Verra
  • Rita Pardini
  • Gian Pietro Pirola

Part of the Lecture Notes in Mathematics book series (LNM, volume 2172)

Also part of the C.I.M.E. Foundation Subseries book sub series (LNMCIME, volume 2172)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Arnaud Beauville
    Pages 1-27
  3. Alexander Kuznetsov
    Pages 67-104
  4. Alessandro Verra
    Pages 105-160
  5. Back Matter
    Pages 169-170

About this book

Introduction

Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments.  It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.

Keywords

14E08, 14F05, 14H10 rational and unirational varieties Fano manifolds cubic fourfold derived category moduli of curves K3 surfaces

Authors and affiliations

  • Arnaud Beauville
    • 1
  • Brendan Hassett
    • 2
  • Alexander Kuznetsov
    • 3
  • Alessandro Verra
    • 4
  1. 1.Laboratoire J.-A. DieudonnéUniversité de NiceNice cedex 2France
  2. 2.ICERM, Brown UniversityBrown University ICERM, Brown UniversityProvidenceUSA
  3. 3.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  4. 4.Dipartimento di MatematicaUniversità Roma TreRomaItaly

Editors and affiliations

  • Rita Pardini
    • 1
  • Gian Pietro Pirola
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Pisa Dipartimento di MatematicaPisaItaly
  2. 2.Dipartimento di matematicaUniversity of PaviaPaviaItaly

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-46209-7
  • Copyright Information Springer International Publishing Switzerland 2016
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-46208-0
  • Online ISBN 978-3-319-46209-7
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book